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Overview

High-order motivation:  minimal dispersion/dissipation

Efficiency – matrix-free factored forms
– solvers:  MG-preconditioned CG or GMRES

Stability – high-order filters
– dealiasing ( i.e., “proper” integration )

Scalability – long time integration
– bounded iteration counts
– scalable coarse-grid solvers  (sparse-basis projection or AMG)
– design for P > 106 ( P > 105 already here…)

Examples – vascular flows
– MHD
– Rod bundle flows
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Navier-Stokes Time Advancement

Nonlinear term:  explicit  
k th-order backward difference formula / extrapolation 
characteristics   (Pironneau ’82, MPR ‘90)

Stokes problem – pressure/viscous decoupling, PN – PN-2 (Maday & Patera 89)

3 Helmholtz solves for velocity – Jacobi-preconditioned CG
(consistent) Poisson equation for pressure (computationally dominant)
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Spatial Discretization: Spectral Element Method  
(Patera 84, Maday & Patera 89)

Variational method, similar to FEM, using GL quadrature.

Domain partitioned into E high-order quadrilateral (or hexahedral) elements 
(decomposition may be nonconforming - localized refinement) 

Trial and test functions represented as N th-order tensor-product 
polynomials within each element.  (N ~ 4 -- 15, typ.)

EN 3 gridpoints in 3D,  EN 2 gridpoints in 2D.

Converges exponentially fast with N for smooth solutions. 

3D nonconforming mesh for 
arteriovenous graft simulations:
E = 6168 elements, N = 7
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Spectral Element Discretization

2D basis function, N=10
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Accuracy
+

Costs
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Spectral Element Convergence: Exponential with N

Exact Navier-Stokes
solution due to
Kovazsnay(1948):
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Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32   
grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)
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Relative Phase Error for h vs. p Refinement:  ut + ux = 0

h-refinement p-refinement

X-axis = k / kmax ,  kmax := n / 2 ( Nyquist )

Fraction of resolvable modes increased only through p-refinement 

Diagonal mass matrix  (low N significantly improved w/ full mass matrix)

Polynomial approaches saturate at k / kmax = 2 / π

N = 8-16 ~ point of marginal return
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N=10

N=4

Costs

Cost dominated by iterative solver costs,  proportional to
iteration count
matrix-vector product + preconditioner cost

Locally-structured tensor-product forms:

minimal indirect addressing

fast matrix-free operator evaluation 

fast local operator inversion via fast 
diagonalization method  (FDM)
( Approximate, when element deformed. )
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Matrix-Matrix Based Derivative Evaluation

Local tensor-product form  (2D),

allows derivatives to be evaluated as matrix-matrix products:

mxm

hi (r)
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For a deformed spectral element, Ω k, 

Operation count is only O (N 4) not O (N 6) [Orszag ‘80 ]
Memory access is 7 x number of points  (Grr ,Grs, etc., are diagonal )
Work is dominated by matrix-matrix products involving Dr , Ds , etc.

Local “Matrix-Free” Stiffness Matrix in 3D
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Summary:  Computational Efficiency

Error decays exponentially with N,  typical N ~ 5-15

For n=EN3 gridpoints, require
O(n) memory accesses
O(nN) work in the form of matrix-matrix products

Standard p-type implementation gives
O(nN3) memory accesses
O(nN3) work in the form of matrix-vector products

Extensions to high-order tets:
Karniadakis & Sherwin (tensor-product quadrature)
Hesthaven & Warburton (geometry/canonical factorization: Dr

T G e Dr )
Schoeberl et al. (orthogonal bases for linear operators)



Mathematics and Computer Science Division, Argonne National Laboratory

Stability
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Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization 
is generally required at high Reynolds numbers.

Some options:

high-order upwinding (e.g., DG, WENO)
bubble functions
spectrally vanishing viscosity
filtering
dealiasing
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Filter-Based Stabilization 

At end of each time step:
Interpolate u onto GLL points for PN-1
Interpolate back to GLL points for PN

F1 (u) = IN-1 u

Results are smoother with linear combination:                   (F. & Mullen 01)

Fα

 

(u) = (1-α) u + α
 

IN-1 u             (α
 

~ 0.05 - 0.2)

Post-processing  — no change to existing solvers

Preserves interelement continuity and spectral accuracy

Equivalent to multiplying by (1-α) the N th coefficient in the expansion
u(x) = Σ uk φk (x)      u*(x) = Σ σk uk φk (x),  σκ= 1, σΝ = (1-α )
φk (x) := Lk(x) - Lk-2(x)                                                             (Boyd 98)

(Gottlieb et al., Don et al., Vandeven, Boyd, ...)
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Numerical Stability Test: Shear Layer Roll-Up 
(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)

2562

2562

1282 2562

25621282
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Spatial and Temporal Convergence        (FM, 2001)

Base velocity profile and perturbation streamlines

Error in Predicted Growth Rate for 
Orr-Sommerfeld Problem at Re=7500

(Malik & Zang 84)
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Filtering permits Reδ99 > 700 for transitional boundary layer calculations

blow up

Re = 700

Re = 1000

Re = 3500
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Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

Ok
High-strain regions
are troublesome…
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Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Consider the model problem:

Weighted residual formulation:

Discrete problem should never blow up.
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Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Weighted residual formulation vs. spectral element method:

This suggests the use of over-integration (dealiasing) to ensure 
that skew-symmetry is retained  

( Orszag ’72, Kirby & Karniadakis ‘03, Kirby & Sherwin ’06)
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Aliased / Dealiased Eigenvalues:

Velocity fields model first-order terms in expansion of straining and rotating flows.
For straining case,

Rotational case is skew-symmetric. 

Filtering attacks the leading-order unstable mode.

N=19, M=19           N=19, M=20

c = (-x,y)

c = (-y,x)
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Stabilization Summary

Filtering acts like well-tuned hyperviscosity

Attacks only the fine scale modes (that, numerically speaking, 
shouldn’t have energy anyway…)

Can precisely identify which modes in the SE expansion to suppress 
(unlike differential filters)

Does not compromise spectral convergence

Dealiasing of convection operator recommended for high 
Reynolds number applications to avoid spurious eigenvalues

Can run double shear-layer roll-up problem forever with 

– ν = 0 ,                                                               

– no filtering
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Dealiased Shear Layer Roll-Up Problem, 1282

ν = 0, no filter                              ν = 10-5, no filter                   ν = 0,  filter = (.1,.025)
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Linear Solvers
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Linear Solvers for Incompressible Navier-Stokes

Navier-Stokes time advancement:

Nonlinear term:  explicit  
k th-order backward difference formula / extrapolation 
characteristics   (Pironneau ’82, MPR ‘90)

Stokes problem: pressure/viscous decoupling:
3 Helmholtz solves for velocity                      (“easy” w/ Jacobi-precond. CG)
(consistent) Poisson equation for pressure (computationally dominant)
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PN - PN-2 Spectral Element Method for Navier-Stokes (MP 89)

Gauss-Lobatto Legendre points
(velocity)

Gauss Legendre points
(pressure)

Velocity, u in PN ,     continuous
Pressure, p in PN-2 ,  discontinuous



Mathematics and Computer Science Division, Argonne National Laboratory

—

Navier-Stokes Solution Strategy

Semi-implicit:  explicit treatment of nonlinear term.
Leads to Stokes saddle problem, which is algebraically split

MPR 90, Blair-Perot 93, Couzy 95

E - consistent Poisson operator for pressure, SPD
Stiffest substep in Navier-Stokes time advancement
Most compute-intensive phase 
Spectrally equivalent to SEM Laplacian, A
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Pressure Solution Strategy: Epn = gn

1. Projection: compute best approximation from previous time steps 

Compute p* in span{ pn-1, pn-2, … , pn-l } through straightforward projection.

Typically a 2-fold savings in Navier-Stokes solution time.

Cost:  1 (or 2) matvecs in E per timestep

2. Schwarz or multigrid preconditioned CG or GMRES to solve

E Δp = gn - E p*
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Initial guess for Epn = gn via projection onto previous solutions

|| pn - p*||E = O(Δtl) + O( εtol )

Results with/without projection (1.6 million pressure nodes):

Similar results for pulsatile carotid artery simulations –
108-fold reduction in initial residual

(F ‘93, ‘98)

Pressure Iteration Count Initial Pressure Residual
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Pressure Solution Strategy: Epn = gn

1. Projection: compute best approximation from previous time steps

Compute p* in span{ pn-1, pn-2, … , pn-l } through straightforward projection.

Typically a 2-fold savings in Navier-Stokes solution time.

Cost:  1 (or 2) matvecs in E per timestep

2. Schwarz or multigrid preconditioned CG or GMRES to solve

E Δp = gn - E p*
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Two-Level Overlapping Additive Schwarz Preconditioner 

δ

Local Overlapping Solves: FEM-based
Poisson problems with homogeneous 

Dirichlet boundary conditions, Ae .

Coarse Grid Solve: Poisson problem
using linear finite elements on entire

spectral element mesh, A0 (GLOBAL).

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)
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Solvers for Overlapping Schwarz / Multigrid

Coarse Grid Solver:  cast solution as projection onto A0 -conjugate basis   (PF ‘96, Tufo & F ’01)

x0= Xl Xl
Tb0                      

Matrix-vector products inherently parallel
Here, choose basis  Xl = (x1 ,  x2, … , xl ) to be sparse .
Use Gram-Schmidt to fill remainder of Xl as  l n .
Properly ordered, XnXn

T = A0
-1 is a quasi-sparse factorization of  A0

-1

Sublinear in P, minimal number of messages.

Good up to P~104, E/P ~ 1.   Must be revisited for P > 105.

Local Solves:  fast diagonalization method (Rice et al. ‘64, Couzy ‘95)

Complexity <  A p

For deformed case, approximate with nearest rectangular brick

Xn



Mathematics and Computer Science Division, Argonne National Laboratory

Coarse Grid Solver Timings: 1272 Poisson Problem on ASCI Red

Coarse-Grid Solve Times

n=16129, 2D Poisson problem

latency * 2 log P curve is best 
possible lower bound

(Tufo & F 01)
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Two-Level Schwarz Heuristics

Local solves eliminate fine-scale error.

Remaining error, due to Green’s functions from incorrect 
BCs on the local solves, is at scale O(H), which is corrected 
by the coarse-grid solve.

Additive preconditioning works in CG / GMRES contexts 
because eigenvalues of (preconditioned) fine and coarse 
modes are pushed towards unity.
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Spectral Element Multigrid

Natural sequence of nested grids — intra-element multigrid

No problem with restriction / prolongation (variational MG)

Difficulty is selection of smoother, M
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Smoothers for SEMG

High aspect-ratio cells resulting from tensor-product of GLL 
grids degrades performance of pointwise smoothers      

(Zang et al. 82, Ronquist & Patera ’87, Heinrichs ’88, Shen et al. 00,…)

Use overlapping Schwarz   (w/ FDM solver…)
eliminates the local-cell aspect ratio problem

Can also be cured by FEM on SEM grid + AMG (CU group…)
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Importance of weighting by W: Poisson eqn. example

Error after a single Schwarz smoothing step

Error after coarse-grid correction

Weighting the additive-Schwarz step is essential to ensuring a smooth error 
(Szyld has recent results)

MSchwarz σ MSchwarz W MSchwarz

(2.0)                                   (0.8)                   (0.15)
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E-Based Schwarz vs. SEMG for High-Aspect Ratio Elements

Base mesh of E=93 elements                         2D Navier-Stokes Model Problem
Quad refine to generate E=372 and                                                        
E=1488 elements, 
N=4,…,16
SEMG reduces E and N dependence
2.5 X reduction in Navier-Stokes CPU                                                      
time for N=16

Overlapping                                   Weighted
Schwarz                                        Schwarz/MG

N                                                   N

Ite
ra
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n 
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un

t
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Iteration Histories for 3D Unsteady Navier-Stokes  (n ~ 106)

Std. — 2-level additive Schwarz Re
T Ae Re

Mod. — 2-level additive Schwarz, based on WRe
T Ee Re

Add. — 3-level additive scheme
Hyb. — 3-level multiplicative scheme
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Weak Scaling Complexity
3D FFT Code Domain Decomp.

P P

pa
ra

lle
l e

ffi
ci

en
cy

— Jacobi
— Conj. Grad.

— DD, XXT coarse-grid

— DD w/ std. c.-grid, 
std.

Scaling to P=105 - 106

Scalability of these algorithms is well-understood and validated 
through numerous examples

Bottom line:   need  n / P  ~  103 – 104

For P=105 n ~  109

n/P = 10 4 n/P = 10 4
3D torus
3D mesh

2D torus
2D mesh
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SEM Examples
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Transition in Vascular Flows w/ F. Loth, UIC

Comparison of spectral element and 
measured velocity distributions in an 
arteriovenous graft, ReG =1200

A   B

A  B

A—A 

B—B 

Spectral Element In vitro LDA
Method Measurement

Mean Axial Velocity

Coherent structures in arteriovenous graft @ ReG = 1200

(Computations by S.W. Lee, UIC.  Experiments by D. Smith, UIC)
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RMS for Re 1200, 70:30 flow division

Experimental data is low-pass 
(< 250 Hz) filtered to remove 
spurious fluctuations inherent in 
LDA measurements of regions 
of high shear flow.

Fluctuation of Axial Velocity Component (RMS)

1.34 2.34 3.34x/D

LDA

CFD

LDA
Filtered

RMS 
[m/s]

0.00

0.10

0.20

0.15

0.05
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Influence of Reynolds Number and Flow Division on urms
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Rod Bundle Flow at Re=30,000 w/ C. Tzanos ‘05

Low-speed streaks and log-law velocity profiles

N = 9 N = 11 N = 15

y+

u+
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7 Pin Subassembly:

E=132,000, N = 7
nv ~ 44 M
np ~ 28 M
niter ~ 30 / step
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7 Pin Configuration

Time-averaged axial (top) and 
transverse (bottom) velocity 
distributions.

Snapshot of axial velocity
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SEMG Scalability:  Incompressible MHD

Study of turbulent magneto-rotational instab-
ilities (w/ F. Cattaneo & A. Obabko, UC)
E=97000, N=9  ( n = 71 M )
P=32768
~ .8 sec/step
~ 8 iterations / step for U & B
Similar behavior for n=112 M

Iteration History, Step 1                                       Iterations / Step

ooo – U
ooo - B
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Numerical Magneto-Rotational Instabilities 
w/ Fausto Cattaneo (ANL/UC) and Aleks Obabko (UC)

SEM discretization of incompressible MHD   ( 112 M gridpoints )
Hydrodynamically stable Taylor-Couette flow

•Distributions of excess angular  
velocity at inner, mid, and outer 
radii

•Computations using 16K   
processors on BGW

•Simulation Predicts: 
- MRI
- sustained dynamo
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MRI Angular Velocity Perturbation  ( v’ = v - <v> )

Axisymmetric                                           3D
In

ne
r W

al
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Summary / Future Effort

High-order SEM formulation

Stable formulation – dealiasing / filtering
– Investigating relationship to SGS modeling                     

(e.g., RT model, Schlatter ’04, comparisons with D-Smagorinsky)

Scalable solvers
Low iteration counts for typical “spectral-type” domains
Iteration counts higher for very complex geometries 

(e.g., multi-rod bundles) – work in progress
We will need to switch to AMG for coarse-grid solve soon

E  > 100,000;  P > 10,000    James Lottes talk

Future
Significant need for scalable, conservative, design codes

Developing conservative DG variant 
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