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The Challenge

I Develop an AMG iterative method to solve Poisson

−∇2u = f

discretized on highly irregular (stretched, deformed, curved)
trilinear FEs.

I System
Ax = b

needs solving many many times (for different b’s), allowing a
very high constant for set-up time.

I Scalability requirements start at

P > 32,000

as a good solution is in place below this level.



Outline

I Notation for iterative solvers and multigrid (3 slides)

I Analysis of two-level multigrid, illustrated on model problem

I AMG iteration design



Iterative Solvers

I Linear system to solve is

Ax = b.

I Iteration defined through preconditioner B by

xk = xk−1 + B(b− Axk−1) = (I − BA)xk−1 + Bb.

I Error ek ≡ x− xk behaves as

ek = Eek−1 = E ke0, E ≡ I − BA.

I Convergence characterized by

ρ(E ), and ‖E‖A ≥ ρ(E ).



Multigrid Iteration

I Multigrid iteration defined by

Emg = I − BmgA = (I − PBcP
tA)(I − BA),

I where Bc is a multigrid preconditioner for the coarse operator

Ac ≡ PtAP,

defined in terms of the n × nc prolongator P,

I and B is the smoother.



C-F Point Algebraic Multigrid

I Assume nc coarse variables are a subset of the n variables, so
that the prolongation matrix takes the form

P ≡
[
W
I

]
for some nf × nc W , with nf + nc = n.

I Let A have the corresponding block form

A =

[
Aff Afc

Acf Acc

]
,

I and also let

Rf ≡
[
I O

]
, Rc ≡

[
O I

]
.



Model Problem

I Poisson, bilinear FEs,
Neumann BCs

I Mesh is 2-D slice from
an application mesh

I A is SPD (but not an
M-matrix) except

I A1 = 0



C-F Points

Figure: C-pts in red, F-pts in blue



Prolongation

The energy-minimizing prolongation of Wan, Chan, and
Smith [8, 9]

Find P, given its sparsity pattern, and with RcP = I , that

minimizes tr(PTAP) subject to P1nc = 1n.



Smoothers

I Damped Jacobi insufficient, Gauss-Seidel not parallel

I Adams, Brezina, Hu, and Tuminaro [1] recommend Chebyshev
polynomial smoothers over Gauss-Seidel

I Sparse Approximate Inverse: Tang & Wan [6]
I Find B with a given sparsity pattern that minimizes ‖I −BA‖F

I SAI-0: Diagonal B

Bii =
Aii∑n

k=1 AikAik
(compare to Jacobi: Bii =

ω

Aii
)

I SAI-1: Sparsity pattern of A used for M
I Simple to compute, and parameter-free



Chebyshev Polynomial Smoothing

Chebyshev semi-iterative method to accelerate I − BA

B1 = a1B, λ(I − B1A) = 1− a1λ(BA)

B2 = a1B + a2BAB, λ(I − B2A) = 1− a1λ(BA)− a2λ
2(BA)
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I Choose coefficients using
Chebyshev polynomials
to damp error modes
λ ∈ [λmin, λmax(BA)]

I λmin open parameter

I B: Jacobi, Diagonal SAI



Smoother Error Propagation Spectra
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Figure: |λi (I − BA)| vs. i



Two-grid Error Propagation Spectra
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Figure: |λi [(I − P(P tAP)−1P tA)(I − BA)]| vs. i



Change of Basis

I Given invertible T , defining a change of basis by,

x = T x̂,

I Transformed system is

Âx̂ = T tb, Â ≡ T tAT .

I Transformed iteration given by

B̂ ≡ T−1BT−t , P̂ ≡ T−1P,

Êmg ≡ (I − P̂Bc P̂
tÂ)(I − B̂Â) = T−1EmgT .

I Equivalent in that

λ(Êmg) = λ(Emg), ‖Êmg‖Â = ‖Emg‖A.



On the C-F Point Assumption

I Analysis of a C-F point AMG method can apply to other, more
general AMG methods, so long as one can find a T such that

P̂ = T−1P =

[
W
I

]
.

I This T is related to the R and S of Falgout and Vassilevski’s
“On generalizing the AMG framework” [4] through

T−1 =

[
S t

R

]
.



Hierarchical Basis

I Two-level hierarchical basis

T ≡
[
I W

I

]
=

[
Rt

f P
]
, T−1 =

[
I −W

I

]
I Chosen so that

P̂ = Rt
c

I Transforms A into

Â =

[
Aff Aff W + Afc

W tAff + Acf Ac

]



Discrete Fundamental Solutions

I The transformed A,

Â =

[
Aff Aff W + Afc

W tAff + Acf Ac

]
,

is block-diagonal when the coarse basis functions are the
discrete fundamental solutions

W? = −A−1
ff Afc .

I But W? is not sparse, hence not a viable choice. Introduce

F ≡ W −W?.



Introducing F

I In terms of F ,

Â =

[
Aff Aff F

F tAff Ac

]
,

I and
Ac = Sc + F tAff F ,

where
Sc ≡ Acc − Acf A

−1
ff Afc

is the Schur complement of Aff in both A and Â.

I Note
‖v‖2

Ac
= ‖v‖2

Sc
+ ‖Fv‖2

Aff
.



Exact “Compatible Relaxation”

Theorem
When Bc = A−1

c , non-zero eigenvalues of Emg are also eigenvalues
of

I − B̂ff Sf ,

where
B̂ff =

[
I −W

]
B

[
I −W

]t
,

is the ff -block of the transformed smoother, and

Sf = Aff − Aff FA
−1
c F tAff

is the Schur complement of Ac in Â.



Two-grid Error Propagation Spectra
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Exact “Compatible Relaxation” Spectra
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Equivalent F-relaxation

Corollary

With an exact coarse grid correction, the spectrum of Emg is left
unchanged when the smoother B is replaced by the F-relaxation

BF-r = Rt
f B̂ff Rf ,

where again,
B̂ff =

[
I −W

]
B

[
I −W

]t
.



Coarse- and Smoother-space Energies

I Coarse-space operator Ac = Sc + F tAff F .

I Smoother-space operator Sf = Aff − Aff FA
−1
c F tAff .

I Coarse-space and smoother-space energies

‖v‖2
Ac

= ‖v‖2
Sc

+ ‖Fv‖2
Aff

,

‖w‖2
Sf

= ‖w‖2
Aff

− ‖F tAff w‖2
A−1

c
,

are minimal and maximal for any vectors when F = O.

I Sf is close to Aff when F is “small”.



Exact “Compatible Relaxation” Spectra
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Inexact Compatible Relaxation Spectra

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

Gauss−Seidel
Damped Jacobi
Diagonal SAI
SAI, A’s stencil
Diagonal SAI, 1st Chebyshev Improvement

Figure: |λi (I − B̂ff Aff )| vs. i



Measuring F

I Define γ as an energy norm of F ,

γ ≡ sup
v 6=0

‖Fv‖Aff

‖v‖Ac

.

I This quantity appears in, e.g., Falgout, Vassilevski, and
Zikatanov [5] in the form

γ2 = sup
v 6=0

‖v‖2
Ac
− ‖v‖2

Sc

‖v‖2
Ac

< 1

as the square of the cosine of the abstract angle between the
hierarchical component subspaces.



How Closely Aff Approximates Sf

Lemma
The eigenvalues of A−1

ff Sf are real and bounded by

0 < 1− γ2 ≤ λ(A−1
ff Sf ) ≤ 1.



Aff vs. Sf : 1− γ2 ≤ λ(A−1
ff Sf ) ≤ 1
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An Inexact Compatible Relaxation Iteration

Theorem
If B̂ff is symmetric and

ρ(I − B̂ff Aff ) ≤ ρf < 1,

then
ρ(Emg) = ρ(I − B̂ff Sf ) ≤ ρf + γ2(1− ρf ).



Symmetric Cycle

Corollary

Define the symmetrized smoother as

Bs ≡ B + Bt − BABt ,

and its transformed ff -block as

B̂ff ,s ≡
[
I −W

]
Bs

[
I −W

]t
.

If σ is given such that

ρ(I − B̂ff ,sAff ) ≤ σ2 < 1,

then

‖Emg‖2
A = ρ[(I − BtA)Q(I − BA)] ≤ σ2 + γ2(1− σ2).



Symmetric Cycle with F-relaxation

Corollary

If the smoother is an F-relaxation,

B = Rt
f B̂ff Rf ,

and σ is given such that

‖I − B̂ff Aff ‖Aff
≤ σ < 1,

then, again,

‖Emg‖2
A = ρ[(I − BtA)Q(I − BA)] ≤ σ2 + γ2(1− σ2).

Equivalent to first half of Theorem 4.2 in Falgout, Vassilevski, and
Zikatanov’s “On two-grid convergence estimates” [5].



AMG Iteration Design

I Central goal: make γ small

I Coarsening heursistic: make the columns of A−1
ff decay quickly

I Prolongation: choose sparsity by cutting off −A−1
ff Afc

according to some tolerance

I Smoother: simple F-relaxation of Aff



Designer F-relaxations, Compatible Relaxation Prediction
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Designer F-relaxations, Two-level Performance
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Two-level Analysis

I Assume the coarse grid correction is exact,

Bc ≡ A−1
c .

I The coarse grid correction

Q ≡ I − PA−1
c PtA,

Q̂ ≡ I − P̂A−1
c P̂tÂ = I − Rt

cA
−1
c Rc Â,

is a projection.

I The error propagation matrix spectrum is

λ(Emg) = λ[Q̂(I − B̂Â)] = λ[(I − B̂Â)Q̂].



Proof of First Theorem

I One may calculate

Q̂ =

[
I O

−A−1
c F tAff O

]
,

ÂQ̂ =

[
Aff − Aff FA

−1
c F tAff

O

]
≡

[
Sf

O

]
,

B̂ ≡
[
B̂ff B̂fc

B̂cf B̂cc

]
,

(I − B̂Â)Q̂ =

[
I − B̂ff Sf O

−A−1
c F tAff − B̂cf Sf O

]
I Sf is the Schur complement of Ac in Â.



More on γ

I One may alternatively define

β ≡ sup
v 6=0

‖Fv‖Aff

‖v‖Sc

= ‖Rt
f FRc‖A.

I The two quantities are related through

γ2 = sup
v 6=0

‖Fv‖2
Aff

‖v‖2
Sc

+ ‖Fv‖2
Aff

= sup
v 6=0

‖Fv‖2
Aff

/‖v‖2
Sc

1 + ‖Fv‖2
Aff

/‖v‖2
Sc

=
β2

1 + β2
.



How Closely Aff Approximates Sf

Lemma
The eigenvalues of A−1

ff Sf are real and bounded by

0 < 1− γ2 ≤ λ(A−1
ff Sf ) ≤ 1.

Proof.

A−1
ff Sf = I − FA−1

c F tAff .

λ(A−1
ff Sf ) = 1− λ(FA−1

c F tAff ) = 1− [{0} ∪ λ(A−1
c F tAff F )].

0 ≤ inf
v 6=0

‖Fv‖2
Aff

‖v‖2
Ac

≤ λ(A−1
c F tAff F ) ≤ sup

v 6=0

‖Fv‖2
Aff

‖v‖2
Ac

= γ2.
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