Turbulent Convection and Dynamo Processes in the Solar Interior

Mark Miesch
HAO/NCAR

Symposium on Turbulence and Dynamos at Petaspeed
NCAR, Boulder, CO
Colleagues

Juri Toomre (Univ. of Colorado, Boulder)

Allan Sacha Brun (CEA Saclay)

Matt Browning (Univ. of Chicago)

Ben Brown, Nicholas Featherstone, Kyle Auguston, Nicholas Nelson (Univ. of Colorado, Boulder)

Marc DeRosa (Lockheed Martin)
Outline

- The Dynamic Sun
- Probing the Solar Interior
- Computational Challenges and Tools
 - The ASH code
- Simulations of Solar Convection
- The Solar Dynamo
- Other Stars
 - Summary and Outlook
Sunspots reflect cyclic magnetic activity

D. Hathaway (NASA MSFC)

22-year activity cycle
Sunspots reflect cyclic magnetic activity and the 22-year activity cycle.
The Solar Butterfly Diagram

SUNSPOT AREA IN EQUAL AREA LATITUDE STRIPS (% OF STRIP AREA)

AVERAGE DAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)

D. Hathaway (NASA MSFC)

Order amid Chaos
How does it arise?
Convection

Differential Rotation

Meridional Circulation

Magnetism
Convection

Differential Rotation

Meridional Circulation

Magnetism
The Sun rings like a bell!
The Solar Internal Rotation

Local Helioseismology

Peering beneath sunspots
Far-side imaging
Solar Subsurface Weather (SSW)

D. Haber, B. Hindman & J. Toomre
(Univ. of Colorado)
The Challenge

Now How do we go about modeling this mess??

 أشهر

 Length Scales

 ‣ Solar radius: 700 Mm
 ‣ Tachocline width: 20 Mm
 ‣ Viscous dissipation scale: 1 cm

 Time Scales

 ‣ Period of sound waves: 5 min
 ‣ Period of gravity waves: 1.5 hours
 ‣ Rotation period: 1 month
 ‣ Activity cycle: 22 years

 Other nastiness

 ‣ Spherical geometry
 ‣ Stratification, rotation, magnetism, shear
 ‣ Boundary layers
 ◦ Top: Granulation, ionization, compressibility, radiative transfer
 ◦ Bottom: Tachocline, convective penetration, instabilities, waves
Now How do we go about modeling this mess??

Length Scales
- Solar radius: 700 Mm
- Tachocline width: 20 Mm
- Viscous dissipation scale: 1 cm

Time Scales
- Period of sound waves: 5 min
- Period of gravity waves: 1.5 hours
- Rotation period: 1 month
- Activity cycle: 22 years

Other nastiness
- Spherical geometry
- Stratification, rotation, magnetism, shear
- Boundary layers
 - Top: granulation, ionization, compressibility, radiative transfer
 - Bottom: tachocline, convective penetration, instabilities, waves

The Challenge

Turbulent!!
The ASH Code

LES/SGS Strategy
- Eddy viscosity, diffusivities
- shave off granulation layer

Anelastic approximation
- perturbations about a hydrostatic reference state
- filters out acoustic waves
- density stratification
- streamfunction formulation

Pseudospectral
- Spherical Harmonic
- Stacked Chebyshev
- Crank-Nicholson/Adams-Bashforth

Parallel
- FORTRAN 90 / MPI
- serial transforms, transposes
- optimal data decomposition
radial velocity, $r = 0.98R$

Miesch, Brun, DeRosa & Toomre (2007)
Solar Cyclones

α b

$r = 0.98R$

pdf

$\xi \left(10^{-4} \text{s}^{-1}\right)$
North-South Downflow Lanes

Equatorward Angular momentum transport
Differential Rotation, Meridional Circulation

![Diagram](image)

- **a**: Contour plot showing the differential rotation with angular velocity $\frac{\Omega}{2\pi}$ in nHz.
- **b**: Graphs indicating the rotation rate at different latitudes (0°, 15°, 30°, 45°, 60°, 75°).
- **c**: Contour map highlighting the meridional circulation with colors indicating clockwise (CCW) and counterclockwise (CW) flow.

r/R represents the radial distance from the center.
The Solar Dynamo

The Solar Dynamo

M. Dikpati & P. Gilman (HAO/NCAR)

Y. Fan (HAO/NCAR)

SOHO/ESA/NASA

N. Brummell (UCSC)
Dynamo Processes

Brun, Miesch & Toomre (2004)

Case M3, t = 567.7 days
Intricate, intertwined field lines and ribbons
Tachocline

Pumping, amplification, organization of toroidal magnetic fields

Browning, Miesch, Brun & Toomre (2006)
So Many Stars ...and so little time

Convective Cores
Convective Envelopes
Fully Convective

Magnetism inferred in an M dwarf

M Stars

Small (0.3 M_{\odot}), Cool (3000K)
Fully Convective

Browning (2007)
A Stars

Big (2 M_{\odot}), Hot (8000K)

Convective Core

N. Featherstone (Univ. of Colorado)

Featherstone, Brun, Browning & Toomre (2007)
Summary and Outlook

~ A Vibrant Sun
 ‣ Magnetism!
 ‣ SOHO, TRACE, SST, Hinode, Stereo, SDO
 ‣ Helioseismogy: Peering inside a star

~ Convection and Dynamo Processes
 ‣ Solar Cyclones, NS lanes
 ‣ Differential rotation, meridional circulation
 ‣ Sustained magnetic field generation
 ‣ Pumping of fields into a *tachocline*
 ‣ Amplification, organization by rotational shear

~ A Universe of Stars
 ‣ Astroseismology: CoRot, Kepler

~ Big computers may be used to tackle big problems!
Next Generation ASH

- Scalably Parallel
 - High Resolution
 - Long time integrations
 - Finite elements?

- Non-uniform grid
 - Spherical geometry
 - Photosphere
 - Overshoot region & Tachocline
 - Time splitting?

- Subsonic
 - Poisson equation
 - Multigrid?

- MHD
 - $\text{Div}(B) = 0$