Temperature: a field with both
spatial and temporal covariance

Year = 1990 Year = 1991

Different types of imperfect observations.




Specity parametric forms

(Tof— [T\ = [To] = {T| = [T.| [T —
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1. Structure of the spatial covariance.

2. An equation for the temperature evolution.

3. 'Observation equations' for instrumental and
proxy data sets.
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BARSAT models the evolution of the field,
and specifies 'observation equations’

[To]— [T\ = [T = [Ts] = [T —[T|—
AU N T N

rp Wy Wy Wy Wy

The Ts are field values and the Ws observations.

The arrows denote conditional dependencies:

P(T,| )=1(T,, T;, W,, parameters)



BARSAT

A Bayesian Algorithm for Reconstructing
Spatially Arrayed Temperatures

Martin Tingley and Peter Huybers



Outline

1. A few words about RegEM.
2. A few words about temperature fields.
3. BARSAT: the main 1deas.
4. A few equations.

5. An example and a short movie.



RegEM — A missing data approach

Two types of
incomplete data
time series.

1 = Observed
0 = Missing




RegEM — A missing data approach

Instrumental ~ Proxy
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Impute

- Assume that the
complete data for

each year 1s a draw
from a MVN.

- Impute the missing
instrumental values,
using the information
contained 1n the
overlap.



Improving on RegEM

- An empirical estimate of the data covariance matrix.

- The locations of the time series are not used.
- Cannot impute where there are no data time series.

- Parametric form for the spatial covariance?
- What about temporal autocorrelation?

- What about the small, but non zero, uncertainty in the
instrumental observations?



BARSAT Equations

Temperature Evolution:

T, — /!I — ('ﬁ_l — I f) + €

Spatial Covariance of Innovations:




BARSAT Equations

Assume a statistically linear relationship between proxy values
and the true temperature values:

“Discrete time, continuous state, Hidden Markov Model”



BARSAT Parameters

Ty — Vector of true temperatures at a number of spatial location.
a — AR(1) coefficient in the temperature evolution equation.
o — Partial sill of spatial innovations.

¢ — Inverse range of spatial innovations.
77 — Error variance of instrumental observations.

72 — Error variance of proxy observations.
/1 — Constant in the equation for the mean of T

— Constant term in the proxy observation equation.
fl — Scaling factor in the proxy observation equation.
§ — Vector composed of the 8 scalar parameters.




Priors and Conditional Posteriors

Prior Form Conditional Posterior
Uniform Truncated Normal
Inverse-Gamma Inverse-Gamma
Log-Normal Non Standard
Inverse-Gamma Inverse-Gamma
Inverse-Gamma Inverse-Gamma
Normal Normal
Normal Normal
Normal Non Standard
MV Normal MV Normal
MV Normal

Our strategy 1s to use low information, but proper, priors, and
show that the data is the major contributor to the posterior.




BARSAT Equations

Probability of the data given unknowns can be decomposed:
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A Gibbs sampler with two Metropolis-Hasting steps 1s used to
draw from this monstrosity . . . .



A Quick Example Using CRU data

Proxies: constructed
by adding WN with
SNR of one to select
CRU time series.

B Instrumental

® Proxy

+ Withheld
No data

= |nstrumental
=== Proxy




Priors and Posteriors




Time series at several locations
Instrumental data [ ' . ]
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Temperature field for two years

Year = 1865

Temperature Anomalies Width of 90% ClI




Observational errors and innovations

Instrumental
observational errors
Proxy
observational errors

Innovations:
Proxy data
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