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Radiosonde balloons
(photo source: US National Weather Service)



The outlier detection problem for radiosondes

Description of the data

Radiosonde

I A radiosonde consists of instruments that are launched from
the surface by balloon and carried through the atmosphere
into the stratosphere.

I Temperature, water vapor, wind speed and wind direction and
pressure are measured at different heights above the surface.

Data from NCAR data support section (DSS)

I There are 40-60 million unique soundings distributed over
1500 locations and over the period 1920-2007.



Fields of the original data
Station ID:1001 ; (1, 161, 392 observations)

Variable Unit Missing data

1 station id no

2 year 4 digit no

3 month 2 digit no

4 day 2 digit no

5 hour 2 digit no

6 pressure hP no

7 Geopotential meters 398,274 (34.29%)

8 Temperature degrees K and tenths 326,170 (28.08%)

9 Dew point degrees K and tenths 503,847 (43.38%)

10 Wind Direction degrees 441,379 (38.00%)

11 Wind Speed m/s and tenths 441,286 (38.00%)
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Description of the data

Temperature vs. pressure of the first 40 unique time points
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Description of the data

I Use year and fraction of year:
I e.g, September 1, 1957, Hour 0 → 1957.668.

I There are 28,788 unique time points;
I Typically 1 or 2 radiosonde every day
I Range: 1957.668- 2002.667

I The range of pressure is 0 - 1,106 hP

I The range of temperature is 173.3 - 401.1 K



How the shape of the radiosonde changes with time
(Year 1958)



The temperature cycle
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Description of the data

Goals

For DSS

I to assemble a single consistent data base for all available
radiosonde measurements.

For statisticians

I to determine objective ways of detecting unusual observations
that can be due to sytematic biases or random problems.
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Proposed methods

Proposed methods

I Robust principal components analysis
I Median-centered spherical PCA (Locantore, Marron, Simpson,

Tripoli, Zhang, and Cohen 1999); (Gervini 2007)
I Functional PCA through conditional expectation (PACE) (Yao,

Muller, and Wang 2004)

I A 2-d (3-d) thin plate partial smoothing spline
I As a project for this summer school
I Using R packages: fields, ncdf
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modelling the discontinuity in the derivative for each radiosonde curve

Wahba’s method (1986)

I Shiau, Wahba, and Johnson (1986)
I Fix one curve: data (pj , x(pj)), j = 1, · · · , n,

I pj is the pressure value,
I x(pj) is the temperature value.

I Model: x(pj) = f (pj) + εj , j = 1, 2, · · · , n. In a partial spline f
is modeled as

f (p) = g(p) + θ|p − p∗|

I p∗= point of discontinuity in derivative (tropopause).

I Tropopause is at a known pressure value.
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modelling the discontinuity in the derivative for each radiosonde curve

Wahba’s method (1986)

I A partial spline estimate of f is obtained by minimizing

1

n

n∑
j=1

{x(pj)− g(pj)− θ|pj − p∗|}2 + λ

∫ ∞
−∞

[g (2)(p)]2dp.

I Partial spline models can be fitted using the ssanova in the R
package gss through the specification of an optional
argument partial (Gu 2002).
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modelling the discontinuity in the derivative for each radiosonde curve

Wahba’s method (1986)

1958.2137
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modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

A parametric model for one curve

Two connected parabolas are used to fit each radiosonde curve:

x(p) = (β0 + β1p + β2p
2) · 1l(p ≤ p∗)

+ (α0 + α1p + α2p
2) · 1l(p > p∗),

α0 = β0 + β1p
∗ + β2p

∗2 − α1p
∗ − α2p

∗2.

where

I p is the pressure level;

I x(p) is the corresponding temperature;

I p∗ is the change point (tropopause) of the curve; the two
parabolas are connected at p∗;

I β0, β1, β2, α0, α1, α2, are parameters;

I 1l is the indicator function.
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modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

How to choose the tropopause?

I I looked at the difference of two successive ratios of
temperature to pressure:

r1(pj) =
x(pj+1)− x(pj)

pj+1 − pj

r2(pj) =
x(pj)− x(pj−1)

pj − pj−1

∆r(pj) = r1(pj)− r2(pj)

I Better methods?
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modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

One good fit
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modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

One bad fit
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PCA

Brief summary of PCA

The general idea

I estimate the mean function µ(p);

I estimate the covariance function G (s, p);
I functional PCA

I The spherical principal components: see Locantore et al.
(1999); Gervini (2007)

I PACE: see Yao, Muller, and Wang (2004)

I use the first K PCs to approximate curves

I outlier detection.
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PCA

Brief summary of PCA

PCA is used to approximate curves using few parameters.

x̂i (p) = µ̂(p) +
K∑

j=1

ξijφj(p).

I p: the pressure value

I xi (p): the temperature value at p

I ξij : principal components cores

I φj(p): principal component function
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PCA

Outlier detection

Several ways:

I Plot pc scores
I L2 type error

I

ERROR1 =

ni∑
j=1

(x̂i (pij)− xi (pij))2

ni

I

ERROR2 =

ni∑
j=1

(x̂i (pij)− µ̂(pij))2

ni
,

where µ̂ is the estimated mean curve.

I Correlation
I CORR1 = corr(x̂i , xi )
I CORR2 = corr(x̂i , µ̂)
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PCA

Outlier detection

Some challenges

I Some PC methods require curves measured at common
points; eg Gervini (2007)

I Some radiosondes are “short”



Median-centered spherical PCA

I Locantore, Marron, Simpson, Tripoli, Zhang, and Cohen
(1999); Gervini (2007)

I The functional median µ̃(p)
I The spherical principal components

I X (p) is projected onto the sphere:

X̃ (p) =
X (p)− µ̃(p)

‖X (p)− µ̃(p)‖
.

I The spherical covariance function

G̃ (s, p) = cov(X̃ (s), X̃ (p)),

is used in the functional eigen-analysis.
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PCA

Functional PCA through conditional expectation (PACE)

The PACE model

I See Yao, Muller, and Wang (2004)

I

Yij = Xi (pij) + εij = µ(pij) +
∞∑

k=1

ξikφk(pij) + εij , pij ∈ T ,

I Yij : observation for the ith subject at the pressure value
pij , i = 1, · · · , n, j = 1, · · · ,Ni ;

I Measurement error εij ∼ N(0, σ2);

I Covariance function G (s, p) = cov(X (s),X (p))
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PCA

Functional PCA through conditional expectation (PACE)

I The mean function µ(p) is estimated based on the pooled
data from all individuals by a local linear smoother;

I The covariance surface G (s, p) is estimated via the local linear
surface smoother using the “raw” covariance

Gi (pij , pil) = (Yij − µ̂(pij))(Yil − µ̂(pil)), j 6= l

I The variance of the measurement errors, σ2,

σ̂2 =
1

|T |

∫
T
{V̂ (p)− G̃ (p)}dp,

where V̂ (p) is the estimate for {G (p, p) + σ2}, and G̃ (p) is
the estimate for {G (p, p)}.
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PCA

Functional PCA through conditional expectation (PACE)

Eigenanalysis

I Eigenfunctions φ̂k and eigenvalues λ̂k are estimated by solving
the eigenequations as follows,∫

T
Ĝ (s, p)φ̂k(p)dp = λ̂k φ̂k(p),

where Ĝ (s, p) is the smoothed covariance surface.

I Estimates for the FPC scores ξik :

ξ̃ik = E [ξik |Yi1, · · · ,YiNi
].
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PCA

Functional PCA through conditional expectation (PACE)

Prediction for individual curves

I The curve Xi (p) for the i-th subject is approximated with the
first K eigenfunctions:

X̂K
i (p) = µ̂(p) +

K∑
k=1

ξ̂ik φ̂k(p).

I Note: PACE has no trouble with short curves or non-common
pressure values
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Some illustrations

PACE

Curves from the 941st time point to the 970th time point
with short curves
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Some illustrations

PACE

Predicted curves via PACE (in black solid lines)
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Some illustrations

PACE

The first 5 PCs via PACE



The mean curve and the effects of adding and subtracting
a suitable multiple of each PC via PACE
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Some illustrations

A toy data set
two types of outliers: different curve shape; position shift.

The blue lines represent 28 curves from June 1980. The red lines
are two curves from December 1980.
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Some illustrations

A toy data set

Pairs of PC scores via PACE



Outliers by pairs of PC scores via PACE

I picked up some curves with spikes;

I picked up curves with a certain shift.
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Some illustrations

A toy data set

ERROR1 via PACE



Outliers by ERROR1 via PACE

I picked up all curves with spikes;

I didn’t pick up curves with a certain shift.
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Some illustrations

A toy data set

1-CORR1 vs. ERROR1 via PACE



Outliers by 1-CORR1 vs. ERROR1 via PACE

I picked up all curves with spikes;

I didn’t pick up curves with a certain shift.

I be consistent with the results using ERROR1 only.
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Some illustrations

A toy data set

1-CORR2 vs. ERROR2 via PACE



Outliers by 1-CORR2 vs. ERROR2 via PACE

I picked up some curves with spikes;

I picked up curves with a certain shift.
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