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Estimating a curve or surface.

T he additive statistical model:

Given n pairs of observations (z;,vy;), i=1,...,n
yi = g(x;) + €

€;'S are random errors
and g is an unknown smooth function.

T he goal is to estimate a function g based on the
observations



A 2-d example

Predict surface ozone where it is nhot monitored.
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Linear smoothers

Let g = g(x1),...,9(x,) be the prediction vector at the
observed points.

A smoother matrix satisfies
g = Ay where
e A IS an n x n matrix

e eigenvalues of A are in the range [0,1].

Note: |[Ay|| < [|y]]

Usually values in between the data are filled in by inter-
polating the predictions at the observations.



Penalized least squares

Ridge regression
Start with your favorite n basis functions {b;}}_,; The
estimate has the form

f(z) = Zn: Brbr(x)
=1

where 8 = (31,...,5,) are the coefficients.

Let Xi, k =0bi(z;) sO f = X[



Estimate the coefficients by a penalized least squares

Sum of squares(3) + penalty on 3
min S (y — [XB1)? + A3THP
1=1

with A > 0 a hyperparameter and B a nonnegative defi-
nite matrix.

or in general,

- log likelihood + )\ penalty on (3

In any case once we have the parameter estimates these
can be used to evaluate g at any point.



T he form of the smoother matrix

Just calculus ...

e Take derivatives of the penalized likelihood w/r to 3,
e set equal to zero,

e solve for (3

The monster ...
B=(XTX+XH) Xy

§=XB=XX'X+ 2 H) ' XTy=AN\)y



Effective degrees of freedom in the smoother

For linear regression trace A()\) gives us the number of
parameters. (Because it is a projection matrix)

By analogy, trA()\) is measure of the effective number
of degrees of freedom attributed to the smooth surface
To see why the trace is a good measure we need an
alternate form form the ridge regression solution.



A useful decomposition

Find a symmetric positive definite matrix ¢ so that
CXTXC =1

U, an orthogonal matrix (i.e. UU! =1T1) sothat UCHCU! =
D

Form the magic matrix G = CU

(XA XG) =GT"(XT"X)G=1 and G'HG =D



Smoothing matrix
AN = X(XTX +2H) ' XT = XGU + \D) '(X&)!

Regression parameters, 3

—~

B; = luli/(1 + ADy)
where u = X' Gy.
Residual matrix:7 — A(\)
I —A(\) = XGAD(I 4+ D) Y(x&)?T
Effective degrees of freedom
tr(A(N)) = tr(XGU + AD) (X&) =
” 1
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Splines

One obtains a spline estimate using a specific basis and
a specific penalty matrix. Splines are confusing because
the basis is a bit mysterious.

T he classic cubic smoothing spline:
For curve smoothing in one dimension,

min 3 (ui — f@))?+ A [ (f'@)de

The second derivative measures the roughness of the
fitted curve. The solution, is continuous up to its sec-
ond derivative and is a piecewise cubic polynomial in
between the observation points.

First an example



Climate for Colorado
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Cubic splines with different )\ s
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The fixed and random part of the model

g = low dimensional parametric model + general function

yi = ) $i(x)d; + h(z;) + €

j=1

T = ¢j(z;) and let K;; = ¢ (x;)

)= el == del)en
=l k=1

or
§g=Td+ K¢



Find the parameters by the ridge regression:
mic?(y —Td - Ke)l'(y—Td — Kc) + X! Qe
C.

Can use the same general formula or take advantage of
the fact that the penalty in only on c.



The cubic smoothing spline

We just need to define the right basis functions and
penalty.

A strange covariance:

[ vPv/2 —u3/6 for u < w
By, v) = { v2u/2 —v3/6 for u > v

Strange basis functions:
p1=1, ¢po==x, Yi(x) = k(z,z;)

T he penalty:
Qi,j — k(aji,a:j) y



Why does this work?

Splines are described by special covariance functions known
as reproducing kernels , k(xz,z’)

with ¢;(x) = k(x,x;) the choice for cubic splines has the
property

[ 4@ @)de = (@) = ki, 2;)
so when h(z) =Y, ¢;c; and T'c = 0.
/ (K (2))2dz = TQe

So the ridge regression penalty is the same as the integral
criterion.



A 2-d thin plate smoothing spline

2 2 2 2 £\ 2
s (5] +2(25) + (7)o

Collectlon of second partials is invariant to a rotation.

Adain, separate off the linear part of f.
f(z) = 81+ Box1 + B3x2 + h(x)

Reproducing Kernel:

k(xz,z') = ||z — 2'||?log(||x — ='||) + linear terms

leading to basis functions that are bumps at the obser-
vation locations.



Some thin plate splines for the ozone data
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Choosing )\ by Cross-validation

Sequentially leave each observation out and predict it
using the rest of the data. Find the )\ that gives the
best out of sample predictions.

Refitting the spline when each data point is omitted,
and for a grid of )\ values is computationally demanding.

Fortunately there is a shortcut.

The magic formula
residual for g(x;) having omitted y;

(i —g-i) = (yi — 3:) /(1L — A(X) )i

This has a simple form because adding a data pair
(x;,g-1) to the data does not change the estimate.



CV and Generalized CV criterion

CV(X)

) 12
(1/n) Z(yz‘ g-i)> = (1/n) Z (1 - A(f;)) )?

GCV (M) — )2
i=1\Yi — Gi
(1 —trA()\)/n)?

(1/n)

Minimize CV or GCV over A to determine a good value



GCV for the ozone data

GCV/( eff. degrees of freedom), the estimated surface
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GCV for the climate data

GCV/( eff. degrees of freedom), the estimated surface
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Summary

We have formulated the curve/surface fitting problem as
penalized least squares.

Splines treat estimating the entire curve but also have a finite
basis related to a covariance function (reproducing kernel).

One can use CV or GCV to find the smoothing parameter.



Thank you!




