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T he additive model

Given n pairs of observations (z;,vy;), i=1,...,n

yi = g(x;) + €

€;'S are random errors.

Assume that g is a realization of a Gaussian process.
and € are M N(0,o02I)

Formulating a statistical model for g makes a very big differ-
ence in how we solve the problem.



A Normal World
We assume that g(x) is a Gaussian process,

pk(z, ") = COV (g(z), g(z))
For the moment assume that E(g(x)) = 0.

(A Gaussian process = any subset of the field locations has
a multivariate normal distribution. )

We know what we need to do!
If we know k£ we know how to make a prediction at z!

g(z) = Elg(z)|datal

I.e. Just use the conditional multivariate normal distri-
bution.



A review of the conditional normal

u~ N(O,X)

y— [ Y1) > — [ Z121
U 2 21,222

[uplui] = N(Zo1X7ju1, Yoo — 5215115 10)

and

Our application is
u; =y (the Data)
and

us> = (g(x1,...9(xy)) a vector of function values where we
would like to predict.



The Kriging weights

Conditional distribution of g given the data y is Gaus-
sian.

Conditional mean

g =COV(g,y) [COV(y)] "y = Ay

rows of A are the Kriging weights.
Conditional variance

COV(g,g) — COV(g,y) [COV(y)] ' COV (y,g)

T hese two pieces characterize the entire conditional distribu-
tion



Kriging as a smoother

Suppose the errors are uncorrelated Normals with vari-
ance o-2.
pK = COV(g,y) = COV(g,g) and COV (y) = (pK + o°I)

h=pK(pK +o°I)" 'y

= KK+ X)) 'y=AN\)y



My geostatistics/BLUE overhead

For any covariance and any smoothing matrix (not just
S above) we can easily derive the prediction variance.

Question find the minimum of
E|(g(z) - §(x))?

over all choices of S. The answer: The Kriging weights
. or what we would do if we used the Gaussian process
and the conditional distribution.

Folklore and intuition:

The spatial estimates are not very sensitive if one
uses suboptimal weights, especially if the observations
contain some measurement error.

It does matter for measures of uncertainty.



Kriging with a fixed part

Adding a fixed component

g(x) =Y ¢i(2)d: + h(x)
d is fixed

h is a mean zero process with covariance, k.



The BLUE/Universal Kriging estimate is:

Find d by Generalized least squares

~ -1

d = (TTM—lT) TT Mty
" Krig” the residuals

h=K(K+ ) (y—Td)

In general:

g(x) = Z ¢i(x)d; + Z k(x,x;)c;

with
¢c=(K+ X)) (y—Td)



The connection to penalized least squares,
splines and the smoothing parameter

Basis functions:
determined by the covariance function

Penalty function
K is based on the covariance.

T he minimization criteria:

rgin > (y— (Td+ Ke)i)* + A’ Kc
,C ;=1

The Kriging estimator is a spline with reproducing kernel k.

A\ is proportional to the measurement (nugget) variance



The Bayes connection

Bracket notation is very useful:
[Z] the density function for the random variable 7

[Y|z] the conditional density function for the random
variable Y given :z.

[y|lg] the likelihood for the data
lylg] ~ MN(g,o°I)

[g] the prior for g.
9] ~ M N (O, pK)
Bayes T heorem: the posterior

gyl = 9L o1t
[y]




The Posterior mode: where [gly] has a maxi-
mum.

Maximizing:

[g|y] is the same as

Minimizing:

—2In[g|y] = —2In(lylg]) — 2In([g]) + 2In([y])

T he posterior mode is the penalized least squares estimate
where the penalty is equivalent to a prior!

This is true even we let ""g” be the entire field, not just its
values at the observations.



A causal example of identifying a covariance
function

A useful form for k are isotropic correlations:

k(z,z') = o(x)o(x) (||l — x'||)

The Matern class of covariances:

¢(d) = p1p(d/0))

6 a range parameter, r smoothness at O.
Y, IS an exponential for v = 1/2 as v — co Gaussian.



Matern family: the shape v

correlation
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Using the temporal information

In many cases spatial processes also have a temporal
component. Here we take the 89 days over the " ozone
season” and just find sample correlations among sta-
tions.
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Mean and SD surfaces for 1987 ozone

seasonal mean (PPB) seasonal sd (PPB)
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Covariance model:
k(z,2') = po(z)o(a)exp(—|lx — z'||/0)

Mean model: E(z(x)) = pu(x)
where p Is also a Gaussian spatial process.




Spatial estimate and uncertainty

Posteror mean Posterior standard deviation.
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Summary

A spatial process model leads to a penalized least squares
estimate

A spline = Kriging estimate= Bayesian posterior mode

For spatial estimators the basis functions are related to the
covariance functions and can be identified from data



