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Outline

e Overview of multivariate spatial regression models.
e Case study: NC temperature and precipitation.

e Case study: pedotransfer functions and soil water profiles.




A Spatial Regression Model

e A spatial regression model:

Y = X3 + h + €
(n x 1) (nxq)(gx1) (nx 1) (n x 1)

where
— E[h] = 0, Var[h] = X,
— E[e] = 0, Var[e] = ¢°1.

— h and € are independent.
e Y ~N(XB,V), V=345l

e B=(X'VIX)"IX'V-1Y, h =3,V (Y - X3)



Multivariate Regression

e A multivariate, multiple regression model:

Y = X3 + €
(n X p) (n x q)(g X p) (n X p)

where

— Each of the n rows of Y represents a p-vector observation.

— Each of the p columns of 3 represent regression coefficients
for each variable.

— The rows of € represents a collection of iid error vectors
with zero mean and common covariance matrix, X..



Multivariate Regression

e MLESs are straightforward to obtain:

B = (XX)"IX'vy
(g X p)

¥ = iY'PY
(p X p)

where P =1 — X(X'X)~1X’.

e Note that the columns of B can be obtained through p uni-
variate regressions.



Vec and Kronecker

e The Kronecker product of an m x n matrix A and an r X g
matrix B is an mr X ng matrix:

a11B a12B -+ a1,B
AQB = a>1B apB - ap,B
i amlB a/mQB ce amnB )
e Some properties:
A(B+C) = AB+ARC
AaBeC) = (A®B)®C
(A®B)(C®D) = AC®BD
(AB) = A'@B’
(AB)! = AlgB!
A®B| = [A["B|"



Vec and Kronecker

e [ he vec-operator stacks the columns of a matrix:

a a
A — | @11 a12
az1 a2

e Some properties:

vec(AXB)
tr(A’'B)
vec(A + B)
vec(aA)

aiy |
vec(A) = | 421
aio
| a22
(B’ ® A) vecX
vec(A) vec(B)
vec(A) + vec(B)

avec(A)



Multivariate Regression Revisited

e Rewrite the multivariate, multiple regression model:

vec(Y) = I, ®X)vec(B) + vec(e)
(np x 1) (np x gp)(gp X 1) (np x 1).

e What is Var|[vece]?

e What is the GLS estimator for vec(3)?



A Multivariate Spatial Model

e Extend the multivariate, multiple regression model:

vec(Y) = (I, ®X)vec(8) + vec(h) 4+ vec(e)
(np x 1) (np X gp)(gp X 1) (np x 1) (np X 1),
where
211 212 i1y
> > >
Var[vec(h)] = I, = 12 =22 2p
Z/12 E/Qp Epp
Var[vec(e)] = X I,



A Multivariate Spatial Model

e One simplification to the spatial covariance matrix is to use a
Kronecker form:

2h=pOK

where
— p is a p X p matrix of scale parameters

— K is an n x n spatial covariance.



A Multivariate Spatial Model

e Extend the multivariate, multiple regression model:

vec(Y) = I,®X)vec(B) + vec(h) 4+ vec(e)
(np x 1) (np X gqp)(gp x 1) (np x 1) (np x 1)
OR
Y — X3 + h + €

e Now everything follows...



Case Study:
Pedotransfer Functions

e Soil characteristics such as composition (clay, silt, sand) are
commonly measured and easily obtainable.

e Unfortunately, crop models require water holding character-
istics such as the wilting point or lower limit (LL) and the
drained upper limit (DUL) which are not so easy to obtain.

— Often the LL and DUL are a function of depth - soil water
profile.



Case Study:
Pedotransfer Functions

e Pedotransfer functions are commonly used to estimate LL and
DUL.

— Differential equations, regression, nearest neighbors, neural
networks, etc.

— Often specialized by soil type and/or region.

e Develop a new type of pedotransfer function that can cap-
ture the entire soil water profile (LL & DUL as a function of

depth).

— Characterize the variation!



Soil Water Profiles
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The BiIg Picture

Soll

Weather

Yield

Many, many
other things..

Big, black box...

The CERES Crop Model

e Soil
— Water holding
characteristics
— Bulk density
— Etc.
e Weather (20 years)
— Solar radiation
— Temperature
max/min
— Precipitation



The Big Picture

e Given a complicated array of inputs, the CERES crop model
will give the yields of, for example, maize.

e Deterministic output — variation in yields also of interest.

e Goals:

— Establish a framework to study sources of variation in crop
yields.

— Assess impacts of climate change on crop yields.



Data

e n = 272 measurements on N = 63 soil samples
— Gijsman et al. (2002)

— Ratliff et al. (1983), Ritchie et al. (1987)

e Includes measurements of:
— depth,

— soil composition and texture

x percentages of clay, sand, and silt
— bulk density, organic matter, and

— field measured values of LL and DUL.



Data

e [ he soil texture measurements form a composition

chay T Zsjit T Zsand = 1

and chay' Zsilt +%4sand are the proportions of each soil com-

ponent.

— Not really three variables...

e To remove the dependence, the additive log-ratio transforma-
tion (Aitchinson, 1986) is applied, defining two new variables

Z Lei
clay Clay



Data - Composition vs LL

CLAY




Data - Composition vs LL
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A Multi-objective Pedotransfer Function

e [ he model for the multi-objective pedotransfer function for a
particular soil is

Yo = ToB + h(Xp) + e(Do)

where

LLq

LL,

Yo = log INEE

| Ag |

and d is the number of measurements (depths) and A,; =
DUL,; — LL,.



A Multi-objective Pedotransfer Function

e T he model for the multi-objective pedotransfer function for a
particular soil is

Yo =TpB+ h(Xp) + €(Dg)
where

Th — 1 XO ZLL,O 0
0 0 1 Xo Zapo |’

and
— Xp is the transformed soil composition information

— 7, | and Z, are additional covariates for LL and A.

x 74 | includes organic carbon

x 24 includes linear and quadratic terms for depth



A Multi-objective Pedotransfer Function

e [ he model for the multi-objective pedotransfer function for a
particular soil is

Yo = T8 + h(Xg) + €(Dg)
where

— h(Xg) is a two-dimensional spatial process that controls
the smoothness of the contribution of X
— €(Dg) is an error process that

x accounts for the dependence in LL and A for a particular
depth and

x accounts for dependence across depths (one-dimensional
spatial process).



A Multi-objective Pedotransfer Function

e Letting
Y =log[LLys --- LLig Ll -+ LlLyg, D11 -+ Dig Do1 - Ang, 1,

then Y is multivariate normal with

E[Y]=TB8  Var[Y] =3+ Ze

0
>, = | 1 2 K
=5

with
— Kij = k(X;,X;)
— S is the covariance of (LL, A) at a fixed depth

— R is the (spatial) covariance across depths



Covariance Structures

e [ he covariance function for h is the Matern family

2(0d/2)Y K, (6d
C(d) :O'2 ( / ) 1/( )
r(v)
where o2 is a scale parameter, 6 represents the range, v con-

trols the smoothness.

— 02 =1 (the p controls the variances), v = 1, and 6 is taken
to be approximately the range of the data.

— T hese choices represent a covariance structure that is con-
sistent with the thin-plate spline estimator (large range,
more smoothness).

— Analogous to fixing the kernel and estimating the band-
width with kernel estimators.



Covariance Structures

e [ he covariance function across depths is exponential
C(d) = o2 exp (—d/0)
where again o2 is a scale parameter and 0 represents the range.

— The parameters 02 = 1 (the matrix S controls the vari-
ances) and 6 is estimated from the data.

— The multiple realizations of the soils allow for improved
ability to estimate both scale and range parameters.



Covariance Structures
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Spatial Smoothing

e Write
Sh4+ 3 = | A 0l gk S11 812 | o R
0 po S12 S22
_ ny O 1 wvip
811” 0 ]@K [’012 v22]®R]
= 51192

e The amount of smoothing is due to the relative contributions
of the variance components, i.e. n1 and no.

e Different degrees of smoothing are allowed for LL and A.

e Also, this construction allows for different degrees of variation
in the error terms for LL and the A variables.



T he Estimator

e [ he model suggests an estimator of the form
Yo = ToB + Kq9,
where

0O no

e [To fit the model, we must estimate:

— M1, M2 and sq11
—_ B, 5
— R and the other entries of S



REML

e Take the QR decomposition of T

T =1[Q1 Q2]

R

0|

e Then ’2Y has zero mean and covariance matrix given by
Q5(Zh + Ze)Qo.

e Maximize (numerically) the likelihood based on Q5Y which is
only a function of the covariance parameters.

e Estimates of 3 and 6 follow directly

3= (T 'm0y 5 =01y -T1p).



An Iterative Approach

0. Initialize: compute K and set S=1 and R =1.

1. Estimate 71 and n» (and sq71) via a simplified type of REML
(grid search).

2. Then
3= (o 'm0y 5 =0 Y -Tp).
3. Compute residuals and

a. Update S (R fixed) — closed form solution.

b. Update R (S fixed) — grid search for 6.

4. Repeat items 1-3 until convergence.



An Iterative Approach

e Let Y =u+ h+4 €, where h and e are independent Gaussian
random variables; the conditional distribution of Y — pu — h
given h is a zero mean Gaussian with covariance matrix e.

e [ hus, the log-likelihood associated with the residuals is given
by

—g|S| ~R| — vec(U) (S~ @ R™1) vec(U)

e [ he quadratic form can be written as
tr(S—1 > > rijuju;)
T g

where r% is the ijth element of R~1 and u; is the bivariate,
unstacked residual for the :th observation.



An Iterative Approach

e An update for S can be written as
N 1 .
S = LYY
1
= “UR U

mn
where U is the n x 2 matrix of unstacked residuals.

e Again, a simple grid search for 6 is used to obtain a new value
for R.



Parameter Estimates

71 72 S11 S29 S12 0

REML | 5.84 | 1.66 | 0.0765 | 0.0483 | -0.0222 | 134.6
Iterative | 5.74 | 2.21 || 0.0697 | 0.0445 | -0.0217 | 144.2




Soil Composition and LL
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Soil Composition and A
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Soil Composition and LL/A
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Organic Carbon and LL
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Depth and A
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Residuals (Within Depth)
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Spatial Covariance Across Depth
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Prediction Error

e [ he real benefit of considering our estimator as a spatial pro-

cess is in the interpretation with respect to the uncertainty of
the estimator:

— The thin-plate spline is a biased estimator with uncorre-
lated error — not easy to quantify the bias (interpolation
error and smoothing error).

— T he spatial process estimator is unbiased, but with corre-
lated error — more complicated error structure but concep-
tually straightforward to work with.



Prediction Error

e [ he estimator can be written as

ToB + Kid
AQY,

A~

Yo

where

Ay = To(T'Q IT)-la~?

+ Ko (@' -7 iT(re i T)TITa ).



Prediction Error

e Hence,

Var(Yo — Yo) = Val’(Yo — AoY)
= Var(Yy) + AgVar(Y)Ay — 2A5Cov(Y,Y)p).

— Var(Yg) and Var(Y) are computed by plugging in param-
eters estimates for > and 2.

— The covariance between Yg and Y comes from h and is
based on the distance between the transformed composi-
tion data.



Generation of Soil Profiles

e Simulations of logLL and log A were generated from a mul-
tivariate normal with mean AgY and variance given by the
prediction error.

e \We use an average soil composition profile computed from
the data and assumed to constant across all depths,

D = {5,15,30,45,60,90,120,150}.
e Represent a draw from the posterior distribution of soil water

profiles based on the estimated mean and covariance structure
and the uncertainty gleaned from the data.



Generation of Soil Profiles
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Application: Crop Models

e Two soils (SIL, S)

— Given the soil composition, organic carbon, depth, etc.,
100 soil profiles (LL, DUL) were generated.

e Twenty years of weather (solar radiation, temperature min/makx,
and precipitation).

e Yield output generated from the CERES-Maize crop model.



Crop Yields
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e SIL (red), S (blue), total annual precipitation (solid line)



Crop Yields
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e SIL (red), S (blue), average annual temperature (solid line)



T hanks!

ssain@ucar.edu
Wwww.image.ucar.edu/~ssain

e Sain, S.R., Mearns, L., Shrikant, J., and Nychka, D. (2006), “A mul-
tivariate spatial model for soil water profiles,” Journal of Agricultural,
Biological, and Environmental Statistics, 11, 462-480.
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