Inlet two:

Covariance Tapering

for Interpolation

.of Large Spatial Datasets ‘




Motivation

Precipitation
anomaly
in April 1948




Motivation

Easy to think in one dimension: precipitation anomaly along 40° lat.
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Motivation

Easy to think in one dimension: precipitation anomaly along 40° lat.

Ordinary kriging
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Motivation

Easy to think in one dimension: precipitation anomaly along 40° lat.

Nearest neighbor kriging with 8 observations
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Motivation

Easy to think in one dimension: precipitation anomaly along 40° lat.

Tapering
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Objective

For an isotropic and stationary process
with covariance Cy(h),
find a taper Cy(h),
such that kriging with the product Co(h)Cy(h)
IS asymptotically optimal.




Objective

For an isotropic and stationary process
with covariance Cy(h),
find a taper Cy(h),
such that kriging with the product Co(h)Cy(h)
IS asymptotically optimal.

MSE(x*, CoCy) o(x*, CoCy)

MSE(x*,Cg) MSE(x*, Cp)
o(x*,C) = C(0) —c*Tc1c*




Matérn Covariance

We need a broad, flexible class of covariances to describe spatial
Processes.

Matérn class covariance

Caw(h) o (ah)”Ky(ah) h = |n|
and spectral density

1
(02 4 p2)Hir2 p= ||

fa,V(P) X

Differentiability at the origin of the covariance is related to the

tail behavior of the spectrum, i.e. the smoothness of the process.
I

; ':-LThe process is m times mean squared di frentiable iff m <w.
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Matérn Covariance




Taper Functions

We impose on the taper Cy the conditions

o Cy is a positive definite function in R¢

e Cy(h) =0 for h > 60




Taper Functions

We impose on the taper Cy the conditions
o Cy is a positive definite function in R¢

e Cyg(h) =0 for h > 6

For example:

e triangular: Cy(h) = (1 —%)_F

e spherical: Cy(h) = (1 - @)i(l T ‘%)

()4 = max(0,x)

|h| of deg k
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Examples

Covariance

Covariance

—— Exponential
—— Spheric
Exp * Spheric

0.0 0.2 0.4 0.6 0.8

—— Matern (1.5)
—— Wendland




Examples

Covariance
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—— Exponential
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Exp * Spheric
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—— Matern (1.5)
—— Wendland

Matern * Wendland




Misspecified Covariances

In a series of (Annals) papers, Stein gives asymptotic results for
misspecified covariances.

Suppose the true covariance Cp and spectrum fo. If we krig with
the misspecified covariance (1 characterized by fq1 then under the
Tail Condition

fl(w)zfy O<vy<oo as|w|— o0 and ...
fo(w)
we have asymptotic optimality
MSE(X*,C1) _ o(x*,C1)

MSE(x*, Cp) MSE(x*, Cp)




Tapered Covariances

Tapering is a form of misspecification if

F(Caw(h)Cy(h))
F(Cop(h))

> v as |w| — oo

Which taper satisfies this condition?

The taper has to be
e as differentiable at the origin as the original covariance

» more differentiable throughout the domain than at the origin
a I'.. o=y _. g

--------




Taper T heorem

Infill Condition: Let x* € D and X1,X»,... be a dense sequence
in D.

Taper Condition: Let fy be the spectral density of the taper
covariance, Cy, and for some e >0 and M < oo

M

folp) < (14 p2)1/+d/2—|-e

Taper Theorem: Assume that Co is a Matérn covariance with
smoothness parameter v and the Infill and Taper Conditions hold.
T hen

MSE (x* *
i = ’C“’”Ce)zl lim — = 1(=~)

=4 2 - Im
- - _ "._:__ii’?.__)oo MSE(X*,CQ,V)




Conditions in Terms of Covariances

The principal irregular term (PIT) relates the tail behavior of the
spectrum and the behavior at the origin of the covariance.

Formally, the PIT of C' is the first term as a function of A in this
series expansion about zero that is not raised to an even power.

Conjecture: Assume a polynomial isotropic covariance function
Cy in R? that is integrable with PIT Bh* and .... Then the PIT
and the tail behaviour are related by

lim " fe(p) = \B - T (a4 d)/Gd_l\

p—00




Simulation Study

When does infill asymptotics kick in?
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Simulation Study

When does infill asymptotics kick in?
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Simulation Study

What is an efficient taper?
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Simulation setup:

—n = 400 or random

observations in [0, 1]2
— Cq,p: Matérn covariance, eff. range 0.4
— Cy: spherical, Wendland-type, range 6
— NN-kriging with neighborhood 6
— prediction on (0.5,0.5).




Simulation Study
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Conclusion

Tapering is an (asymptotically and computationally) efficient tech-
nigue to create sparse covariance matrices.

Taper range can be justified by computing resources. However,
20—30 locations within the taper range is often sufficient.
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