Statistical Models
for Climate Model Output



Motivation, means and ends

e Expensive ensembles of climate models (GCMSs) are avail-
able. We should extract as much information as possible
from them by reconciling and summarizing their different
projections.

e We substitute formal statistical analysis for qualitative as-
sessment based on heuristic criteria of model performance
and inter-model agreement.

e The goal is to produce a probabilistic representation of the
uncertainty in future temperature (precipitation) change,
at regional scales, useful for impact research and decision
making.



Which regional scales?

i¥m - [ nk
AL Mk [T=T] Meizaw Dursps FLS BMaibem dzin
WAL, e uneea heth At R Lo pve sty Tk Tt
CRA CerbolMors Armedos Chli Gotrx kaa EAS Eaalam Aae
Eha P Morsdaeg i An Saba TASL SeaswEn A
Lo LR Wi F e BT EEN T R A
CEM Carbal A A [FEINE A ALY Modbar Loitiis
ALLY Ammapees A= g ks FAY Fgao g Aok
=1 Sfmatrat Bk frarida ART BArrdriis



A first attempt at synthesizing GCMs:
Reliability Ensemble Average (REA) method
(Giorgi and Mearns, J. of Climate, 2002)

e M climate models

X; - projections of current climate by GCM j

Y; - projections of future climate by GCM 3

e X, - observed current true climate (uncertainty €)

Define AT; = Y; — X;, and consider an estimator of the form
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Aj is —in Giorgi and Mearns’ terms — the " reliability” of the j-th
GCM



Two criteria bearing on \; are proposed:
BIAS and CONVERGENCE

e Reward GCMs that perform well in reproducing current
climate/discount GCMs that show a large bias

e Reward GCMs that form the consensus/downweight ex-
treme projections

Aj = (B A8
where

= mi e . — mi € __
AB,; = min (1, |Xj—X0|) , Ac,j = min (1, IYj—f’l)

m, n control the relative importance of the two criteria (set
to 1 in the paper)

Iterate to convergence...



See Nychka & Tebaldi (2003) for an interpretation of the
REA weighted average.



Bayesian Univariate Model

Xo ~ N, 1, (Ao known)
Xj ~ N[/")‘j_l]v
Y;|X; ~ Nlv, (0Xx)7],

where u, v, 0, A;.s have prior distributions

n,v o~ U(—O0,00),
0 Gla, b],
)\1,...,AM ~ G[a,b].
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The hyperparameters a,b are chosen to produce diffuse but

proper priors. In practice, we set them = 0.01.



Define:
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Gibbs Sampler Updates
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REA-like features of the posterior estimates:

p* is weighted average of observations and GCM output

v* is weighted average of GCM output

1
(X—m+5 (¥ —v)?

Al's are weights and look like = 1
2



Shortcomings of this model

Only two data points to estimate each A;!
Very unstable estimates, and very " diverse”’ across GCMs.

No correlation between X; and Y;



Bayesian Univariate Model (the return)
Xo ~ N[u,2p", (Ao known)

X; ~ Np, A,
Y| X; ~ N+B(X;— ), (0x)71,

where u,v, 3,0, )\;.s have prior distributions

o2 Vvﬁ ~ U(—O0,00),
0 ~ Gla,bl,
)\1,...,>\M ~Y G[a)\,b)\],
a), b)\ ~ G[a*, b*].

The hyperparameters a, b, a*, b* are chosen to produce diffuse
but proper priors. Here too we set all = 0.01.



Define:
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Gibbs Sampler Updates

[~ 1
p|rest ~ N 2 /\o+Z>\j+9622>\j] ,
vlrest ~ N |5 gt

L J

B | rest ~ N

_’8’ OZAj(%Xj—u)?} ’
Aj |rest ~ Gam[a+1,b4L(X; —p)? + HY; —v—B(X; — n)}?,
0| rest ~ Gam [a—k%,b—i—%Z)\j{Yj—u—,@(Xj—u)}z}.

For the parameters ay, by, use Metropolis



Improvements on first model

By imposing a common prior on the A;'s we constrain them
not to be too different from one another. We assume this
family of GCMs is quite homogeneous.

The data will suggest if correlation exists between X;'s
and Yj's. Posterior PDF of 8 will tell ...



Validation of the Univariate Model

We now have a predictive distribution for AT =Y, — X,
how do we validate it?

Wait until the end of the century, observe actual temper-
ature change and compare to predictive distribution.

Disadvantages? Advantages?



Cross-Validation in the Univariate Model

Rather, let's assume our GCMs are a sample from an infi-
nite population

Based on the posterior distribution of all parameters we
can compute a posterior predictive distribution for a new
GCM's

(i) Ak ~ G(ax,by)

(ii) conditionally on A, Y* — X* ~ N[v — p, %].

Mixing over the posterior of all parameters we obtain a full
posterior predictive distribution for Y* — Xk,

Do it by cross-validation



Cross-Validation Algorithm

For each g =1,..., M perform analysis leaving GCM 3 out

At the nt" iteration, use values of parameters
a{”, b, n™, L™, gm g to generate

}\g.n) ~ Gam {ag\n), bg\n)]

and compute

U(’I’L) — @ l/tj—)(j—(y('")_p/('n.))
J { \/(Agn))_l(ﬁ(n)_1)2+(0(n))_1)

Take average U; = > U;")/N

Plot U;'s across GCMs and regions, apply tests of fit, etc.



We have GCM output over the entire globe. Let's write
down a multivariate model, synthesizing projections on a
number of regions at once.



Bayesian multivariate model:
Likelihood

Observed current temperature in region 2

Xio ~ Nlpo + Cir Ayi'ls (Ao; known)

Simulated current temperature for model 3, in region z,

Xij ~ Nlpo + Ci + oy (mijdir;) "]

Simulated future temperature for model 3, in region 1,

Yij | Xij ~ Nvo+ ¢ + o + Bi( X5 — po — G — o), (030:0;) 7]



Bayesian multivariate model:
Prior distributions

M07V07Ciacz{76i760 ~ U(—O0,00),
0is Pis Yo, 0o, Cy an, B ~ Gam[a’7 b]a
)‘jl a)\,b)\ ~Y Gam[aA,bA],
ni; ~ Gam]c,(],
ajl o~ N[O,
a;. | @5 B0y 00,0 ~ N[Bocy, (Borbo) ']

a=0b=0.01.



Features of this model

e Mean component:
Model-specific biases — shrinkage

Region-specific effects — no shrinkage

e \Variance component:
Model- and region-specific factors.

Interaction effects — governed by parameter c.
1. ¢ — oo implies n;; = 1, i.e., no interaction

2. ¢ — 0 implies no constraint on variances, i.e., uni-
variate approach

3. in our model a posterior distribution for ¢ is esti-
mated, i.e., the data tell us what the interaction
level is.



Implementation

e MCMC algorithm for the posterior densities

e Cross-validation statistics Uj;

Both are calculated by generalizing the univariate model.



Some intermediate results (1)
Univariate and multivariate densities

compared for 6 regions

Dent

= 1000 Bandwidth = 0.09757
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Some intermediate results (2)
Goodness of fit of the U statistics

For each region we have M values of Uj;;

Use Kolmogorov-Smirnov test: are these M values from a
Uniform distribution?



Some intermediate results (3)
U statistics for the univariate
and multivariate model

UV: DJF, A2 MV: DJF, A2
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Do the rows look Uniform?



Some intermediate results (4)
Precision of the estimates

Are the multivariate model predictive distributions " tighter”
than those derived through the univariate model?

Overall, yes (on average) but individual regional compar-
isons vary significantly:

IQR TI5R BR
DJFA2 | 1.11 (13) | 1.09(12) | 1.12(15)
DJFB2 | 1.04 (13) | 1.04(14) | 1.05(12)
JJAA2 | 1.05 (13) | 1.04(14) | 1.00(14)
JJAB2 | 1.10 (15) | 1.08(16) | 1.08(14)




Some intermediate results (5)
Sensitivity analysis

First univariate model (Tebaldi et al. 2005, J. of Climate)
produces PDFs highly sensitive to small perturbation in
individal models’ projections.

The two subsequent formulations do not suffer from the
same problem.
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Final Results:
PDFs of Temperature Change

What this is all about, of course, is producing probabilistic
projections of climate change:

AT, = vo—po+¢ — G

We compute posterior PDFs for the 22 regions,
for all seasons,

under different SRES emission scenarios.



Temperature change in DJF, 2080-99 vs. 1980-99 under A2 and B2
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