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Outline

e Overview of Markov random fields.

e Case study I: A multivariate analysis of a regional climate
model ensemble.

e Case study II: Spatial extremes.

e Case study III: Functional ANOVA and NARCCAP.
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Spatial Data

o Let s € R indicate a generic data location in a d-dimensional
space.

— Typically, d = 1,2, or 3.

e Let s vary over an index set D C R to generate a random
field {Y(s) :s € D C R4},

— Y (s) is an feature observed at location s.

e [ hree types of spatial data:
— (Geostatistical data
— Lattice or areal/regional data

— Point patterns



Geostatistical Data

e Let s vary over an index set D C R? to generate a random
field {Y(s) : s € D C R4},

— D is a continuous, fixed set:

* Y (s) can be observed everywhere within D
x the points in D are non-stochastic.

— Y can either be continuous or discrete.

e Generally, some assumption of stationarity is made, a covari-
ance function is adopted, and the goal is to reconstruct the
underlying process that generated Y (Kriging).

— Covariance is a function of the distance and/or direction
between locations.



Lattice Data

e Let s vary over an index set D C R4 to generate a random
field {Y(s) :s € D C R4},

e D is fixed and discrete, i.e. non-random and countable
e Y can either be continuous or discrete.

e Lattices can be regular, as on a grid, or irregular where there
IS Nno predictable pattern.

— Examples: remote sensing, police precincts, zip-codes, cen-
sus divisions, etc.

e Also referred to as regional or areal data.
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Kriging Lattice Data?

e [ he goals of a spatial analysis of lattice data can be similar
to geostatistical data, i.e. prediction, modeling, etc., but...

e The notation of Y (s) might be somewhat misleading or con-
fusing: is s a point location?

e Often, analysts define a representative point for a lattice site
and use traditional geostatistical methods for analysis.

— Many issues arise, in particular for irregular lattices: arbi-
trariness of representative points and distances, aggrega-
tion (e.g. unequal variances, observations not continuous,
etc.), lack of well-defined locations for prediction, etc.

e Need for more formal approaches...



Spatial Autoregressive Models

e Geostatistical methods model spatial dependence through spec-
ification of a covariance function based on the distances be-
tween points.

e Spatial autoregressive models represent the data at a spatial
location as a linear combination of neighboring locations.

— Spatial dependence is induced through this autoregression
and the neighborhood structure in the data.

e Two formulations: simultaneous autoregressive (SAR) models
and conditional autoregressive (CAR) models.

— Unlike temporal autoregressive models, these formulations
do not necessarily yield the same model.



A Look Back...

e Consider a simple AR(1) time series model through a simul-
taneous specification:

Zt:/*l'_l_p(Zt—l_:u)_l_eta 7::17"'7'”’7

where ¢ is a white-noise process.

e In matrix form:

Z=p+pH(Z—p)+ €

0 0
=( o)

where



A Look Back...

e We can also define the conditional distributions:

F(Za) ~ N (pZ1,0%),  i=1,..n

e Both specifications give rise to a joint distribution:

Z ~N(p,%)
where
[ 1 P 2 pn—1
-2 A 1 p P”_i
N= el p 1 pr
\pn—l pn.—2 pn—3 1 )



SARS

e The SAR model is specified via

n
yi =i+ O 9ii(yi — i) + & i=1,...,n,
j=1

where
— u; is the mean of y;
— €; are zero-mean, uncorrelated random shocks
— gjj are spatial weights
* gy = 0
x In general, Gij does not have to equal gji-

« Typically, g;; =0 if j & N;.



SARS

e In matrix form,

Y —p
(I-G)(Y —p)

G(Y —p) + €

|
g

e Some properties:
— ElY]=p
—var[Y] = 1-G)"18(I - G)~1 with S = var(e) (diagonal)
— covle,Y] =covle, I—G)lel =0 -G)1S

e Note that € and Y are not independent, i.e. the shock at the

1th site is not independent of the autoregressive variable at
the j5th site.



MRFs and CARS

e Besag (1974) showed that the collection of conditional dis-
tributions f(y;ly—;), ¢ = 1,...,n can be combined to form a
joint distribution f(y1,...,yn).

e T he collection of Gaussian conditionals with

n
Elyily— = i+ Y bii(y; —py)  and  Varlyly_;] = 77,
J=1
gives rise to a joint Gaussian distribution,
N(I'l'a (I T B)_lM)7

so long as some symmetry conditions are met and the bij are
chosen to ensure a positive-definite covariance matrix.



Factorization T heorem

e Assume we have a family of one-dimensional conditional dis-
tributions of the form p(xz;|z;,5 7 i). Then, for some fixed

reference point (z7,...,x5),
p(z1,...,%n)
p(z7,. ., T5)
-1
. " p(xélf_a"°7x;<7xi+17xi+2"'7mn)
- H * * %
izop($17"‘7$i7$i—|—17xi+2""7$n)
n—1 p(:cz-_|_1|:13>{,...,xff,xi_I_Q,..-,ﬂ?n)

=0 p<xz—|—1 * |$>I]<_, R 713?71‘7:4—27 s 73371)



MRFs and CARS

e Some conditions on {b;;}:

— b;; = 0 and bz‘j:OiijNi

T2 =1b

ijT; ;72 (symmetry)

— b;

— Generally, the non-zero bz-j are assumed to be proportional
to some fixed constants.

e T he off-diagonal elements of the inverse covariance matrix
are either:

— zero, implying conditional independence between observa-
tions that are not neighbors, or

ZJ/T , implying conditional dependence.



CAR vs SAR

e A matrix representation for the CAR model gives
Y—-p=B(Y-—pn)+4
where 6 = (I — B)(Y — ) are “pseudo-errors’”.
— Note that
cov[d, Y] =covI-B)(Y —u), Y] =(-B)var[Y] =M
e The matrix M is diagonal, suggesting that the shock at loca-

tion ¢ is independent of the autoregressive variable at the jth
Site.



More on CAR vs SAR

e Assuming the means are the same, then the SAR and the
CAR specification are the same if and only if

I-B)"M=0-G)1sa-agH1
— Since M is diagonal, any SAR can be represented as a

CAR, but not vice versa — hence the CAR is more general.

e The CAR model immediately gives rise to the best (mean
squared prediction error) predictor.

e [ here are issues with identifiability and consistency when es-
timating spatial dependence parameters 9ij for SAR models.



More on CAR vs SAR

e Likelihood computations with both SAR and CAR models are
expensive, but the spatial dependence matrices (G and B)
are typically sparse, making storage and computation more

efficient.

e T[T he conditional nature of the CAR specification and its in-
terpretation has advantages when extending to multivarate
spatial models and in conjunction with a hierarchical Bayesian

model.



MRFs and CARS

e A very simple CAR covariance can be written as
(I-B) M =s2I-¢C) !

where
— M = ¢2I (homogeneity) and C is an adjacency matrix

— ¢ is a spatial dependence parameter (bz-j = ¢Ij€Ni)

e [ he conditional mean simplifies to

Elyily—il = ni+¢ > (y; — pj)

JEN;

e ¢ can be interpreted as partial or conditional correlation be-
tween two neighboring locations.



Multivariate CAR Models

e Let Y, be a p-dimensional random vector with a Gaussian
conditional distribution with

EIY; Yl =p+ D> Ay(Y; — ) var[Y;[Y ;] =T;.
JEN;

e Assuming

— AT = I‘iA;-,L- fori,7=1,...,n (symmetry)

* Ajj = —Iand A;; =0 for j & N;
— BIock(—I‘;lAij) or Block(—A;;) is positive-definite
then Y = (YY,...,Y}) is Npp(u,X) where

_ ~1
= (uy,...,u) and > = (Block(—I‘,L. 1Aij)) .



Multivariate CAR Models

—1
e The joint distribution: Y ~ Ny <,u, (BIock(—I‘;lAZ—j)> )

o Let:

— p, = X!B where X; is a known g¢-vector for location ¢ and
B is a g x p matrix of parameters.

— I, =T
—Aij:AfOl”l:<j, J € N;.



Multivariate CAR Models

e [ he joint covariance can be written as

> =T*H 'T*
where
r=1,oT/?
and
| I —BI(2e Ny) ... —BI(n€ Nqp) |
H— —~B'I(1 € N») I ... —BI(n € N»)
 —B'I(1e€N,) -BI(2eN,) ... I

e Note the reparameterization: B = I'" 1/2AT1/2



Multivariate CAR Models

e The form and value of B ensures H (and X)) is positive-definite
and controls the nature of the spatial dependence and inter-
actions.

e T he conditional mean can still be thought of as a weighted
average of the observations at neighboring locations.
— Weights are complicated functions of the within location

correlation and spatial dependence parameters.

e The conditional or partial correlation is a function of both I
and B.
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