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Outline
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• Overview of Markov random fields.

• Case study I: A multivariate analysis of a regional climate

model ensemble.

• Case study II: Spatial extremes.

• Case study III: Functional ANOVA and NARCCAP.
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Spatial Data
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• Let s ∈ <d indicate a generic data location in a d-dimensional
space.

– Typically, d = 1,2, or 3.

• Let s vary over an index set D ⊂ <d to generate a random
field {Y(s) : s ∈ D ⊂ <d}.

– Y (s) is an feature observed at location s.

• Three types of spatial data:

– Geostatistical data

– Lattice or areal/regional data

– Point patterns



Geostatistical Data
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• Let s vary over an index set D ⊂ <d to generate a random
field {Y(s) : s ∈ D ⊂ <d}.

– D is a continuous, fixed set:

∗ Y (s) can be observed everywhere within D

∗ the points in D are non-stochastic.

– Y can either be continuous or discrete.

• Generally, some assumption of stationarity is made, a covari-
ance function is adopted, and the goal is to reconstruct the
underlying process that generated Y (Kriging).

– Covariance is a function of the distance and/or direction
between locations.



Lattice Data
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• Let s vary over an index set D ⊂ <d to generate a random
field {Y(s) : s ∈ D ⊂ <d}.

• D is fixed and discrete, i.e. non-random and countable

• Y can either be continuous or discrete.

• Lattices can be regular, as on a grid, or irregular where there
is no predictable pattern.

– Examples: remote sensing, police precincts, zip-codes, cen-
sus divisions, etc.

• Also referred to as regional or areal data.



Geostatistical vs Lattice Data
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Kansas weather stations (2004)

Denver police precincts



Kriging Lattice Data?
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• The goals of a spatial analysis of lattice data can be similar
to geostatistical data, i.e. prediction, modeling, etc., but...

• The notation of Y (s) might be somewhat misleading or con-
fusing: is s a point location?

• Often, analysts define a representative point for a lattice site
and use traditional geostatistical methods for analysis.

– Many issues arise, in particular for irregular lattices: arbi-
trariness of representative points and distances, aggrega-
tion (e.g. unequal variances, observations not continuous,
etc.), lack of well-defined locations for prediction, etc.

• Need for more formal approaches...



Spatial Autoregressive Models
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• Geostatistical methods model spatial dependence through spec-
ification of a covariance function based on the distances be-
tween points.

• Spatial autoregressive models represent the data at a spatial
location as a linear combination of neighboring locations.

– Spatial dependence is induced through this autoregression
and the neighborhood structure in the data.

• Two formulations: simultaneous autoregressive (SAR) models
and conditional autoregressive (CAR) models.

– Unlike temporal autoregressive models, these formulations
do not necessarily yield the same model.



A Look Back...
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• Consider a simple AR(1) time series model through a simul-

taneous specification:

Zt = µ + ρ(Zt−1 − µ) + εt, i = 1, . . . , n,

where εt is a white-noise process.

• In matrix form:

Z = µ + ρH(Z− µ) + ε

where

H =

(
0′ 0
I 0

)



A Look Back...
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• We can also define the conditional distributions:

f(Zt|Zt−1) ∼ N
(
ρZt−1, σ2

)
, i = 1, . . . , n.

• Both specifications give rise to a joint distribution:

Z ∼ N (µ,Σ)

where

Σ =
σ2

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

... ... ... . . . ...
ρn−1 ρn−2 ρn−3 · · · 1





SARs
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• The SAR model is specified via

yi = µi +
n∑

j=1

gij(yj − µj) + εi, i = 1, . . . , n,

where

– µi is the mean of yi

– εi are zero-mean, uncorrelated random shocks

– gij are spatial weights

∗ gii = 0

∗ In general, gij does not have to equal gji.

∗ Typically, gij = 0 if j /∈ Ni.



SARs
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• In matrix form,

Y − µ = G(Y − µ) + ε

(I−G)(Y − µ) = ε.

• Some properties:

– E[Y] = µ

– var[Y] = (I−G)−1S(I−G′)−1 with S = var(ε) (diagonal)

– cov[ε,Y] = cov[ε, (I−G)−1ε] = (I−G)−1S

• Note that ε and Y are not independent, i.e. the shock at the
ith site is not independent of the autoregressive variable at
the jth site.



MRFs and CARs
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• Besag (1974) showed that the collection of conditional dis-

tributions f(yi|y−i), i = 1, . . . , n can be combined to form a

joint distribution f(y1, . . . , yn).

• The collection of Gaussian conditionals with

E[yi|y−i] = µi +
n∑

j=1

bij(yj − µj) and Var[yi|y−i] = τ2
i ,

gives rise to a joint Gaussian distribution,

N (µ, (I−B)−1M),

so long as some symmetry conditions are met and the bij are

chosen to ensure a positive-definite covariance matrix.



Factorization Theorem
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• Assume we have a family of one-dimensional conditional dis-

tributions of the form p(xi|xj, j 6= i). Then, for some fixed

reference point (x∗1, . . . , x∗n),

p(x1, . . . , xn)

p(x∗1, . . . , x∗n)

=
n−1∏
i=0

p(x∗1, . . . , x∗i , xi+1, xi+2 . . . , xn)

p(x∗1, . . . , x∗i , x
∗
i+1, xi+2, . . . , xn)

=
n−1∏
i=0

p(xi+1|x∗1, . . . , x∗i , xi+2, . . . , xn)

p(xi+1 ∗ |x∗1, . . . , x∗i , xi+2, . . . , xn)



MRFs and CARs
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• Some conditions on {bij}:

– bii = 0 and bij = 0 if j 6∈ Ni

– bijτ
2
j = bjiτ

2
i (symmetry)

– Generally, the non-zero bij are assumed to be proportional
to some fixed constants.

• The off-diagonal elements of the inverse covariance matrix
are either:

– zero, implying conditional independence between observa-
tions that are not neighbors, or

– −bij/τ2
i , implying conditional dependence.



CAR vs SAR
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• A matrix representation for the CAR model gives

Y − µ = B(Y − µ) + δ

where δ = (I−B)(Y − µ) are “pseudo-errors”.

– Note that

cov[δ,Y] = cov[(I−B)(Y − µ),Y] = (I−B)var[Y] = M

• The matrix M is diagonal, suggesting that the shock at loca-

tion i is independent of the autoregressive variable at the jth

site.



More on CAR vs SAR
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• Assuming the means are the same, then the SAR and the

CAR specification are the same if and only if

(I−B)−1M = (I−G)−1S(I−G′)−1

– Since M is diagonal, any SAR can be represented as a

CAR, but not vice versa – hence the CAR is more general.

• The CAR model immediately gives rise to the best (mean

squared prediction error) predictor.

• There are issues with identifiability and consistency when es-

timating spatial dependence parameters gij for SAR models.



More on CAR vs SAR
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• Likelihood computations with both SAR and CAR models are

expensive, but the spatial dependence matrices (G and B)

are typically sparse, making storage and computation more

efficient.

• The conditional nature of the CAR specification and its in-

terpretation has advantages when extending to multivarate

spatial models and in conjunction with a hierarchical Bayesian

model.



MRFs and CARs
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• A very simple CAR covariance can be written as

(I−B)−1M = σ2(I− φC)−1

where

– M = σ2I (homogeneity) and C is an adjacency matrix

– φ is a spatial dependence parameter (bij = φIj∈Ni
)

• The conditional mean simplifies to

E[yi|y−i] = µi + φ
∑

j∈Ni

(yj − µj)

• φ can be interpreted as partial or conditional correlation be-
tween two neighboring locations.



Multivariate CAR Models
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• Let Yi be a p-dimensional random vector with a Gaussian
conditional distribution with

E[Yi|Y−i] = µi +
∑

j∈Ni

Λij(Yj − µj) var[Yi|Y−i] = Γi.

• Assuming

– ΛijΓj = ΓiΛ
′
ji for i, j = 1, . . . , n (symmetry)

∗ Λii = −I and Λij = 0 for j /∈ Ni

– Block(−Γ−1
i Λij) or Block(−Λij) is positive-definite

then Y = (Y′
1, . . . ,Y′

n)
′ is Nnp(µ,Σ) where

µ = (µ′1, . . . , µ′n)
′ and Σ =

(
Block(−Γ−1

i Λij)
)−1

.



Multivariate CAR Models

23

• The joint distribution: Y ∼ Nnp

(
µ,
(
Block(−Γ−1

i Λij)
)−1

)
.

• Let:

– µ′i = X′
iβ where Xi is a known q-vector for location i and

β is a q × p matrix of parameters.

– Γi = Γ

– Λij = Λ for i < j, j ∈ Ni.

∗ Λji = Λ′.



Multivariate CAR Models
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• The joint covariance can be written as

Σ = Γ∗H−1Γ∗′

where

Γ = In ⊗ Γ1/2

and

H =


I −BI(2 ∈ N1) . . . −BI(n ∈ N1)

−B′I(1 ∈ N2) I . . . −BI(n ∈ N2)
... ... . . . ...

−B′I(1 ∈ Nn) −B′I(2 ∈ Nn) . . . I



• Note the reparameterization: B = Γ−1/2ΛΓ1/2



Multivariate CAR Models
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• The form and value of B ensures H (and Σ) is positive-definite

and controls the nature of the spatial dependence and inter-

actions.

• The conditional mean can still be thought of as a weighted

average of the observations at neighboring locations.

– Weights are complicated functions of the within location

correlation and spatial dependence parameters.

• The conditional or partial correlation is a function of both Γ

and B.



Thanks!
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