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An RCM Example
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• Driven by the NCAR/DOE Parallel Climate Model, the MM5

RCM was used to produce a control run and three future runs.

– Control: 1995-2015

– Future: 2040-2060

• Domain: western US, part of western Canada

• Climate scenario: “business as usual”

– 1% yearly increase in greenhouse gasses

• Daily max/min temperature and precipitation
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• n = 2464 grid boxes on a regular lattice.

• Max/min temperature converted into midpoint (and range).

• 20-year winter (DJF) “averages” computed for each grid box.

• Two variables: ∆Tmid, ∆Precip

– ∆ = Futurei −Control, i = 1,2,3



An RCM Example
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A Hierarchical Model
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• Data model:

yrj ∼ N
(
X1αj + X2βrj + hrj,Σj

)
, r = 1, . . . , m, j = 1, . . . , p,

– X includes intercept, longitude, latitude, and elevation.

• Process model:  βr1
...

βrp

 ∼ N

 β1
...

βp

 ,Σb

 ,

 hr1
...

hrp

 ∼ N

 h1
...
hp

 ,V
(
{τ2

j }, {ρj`}, {φj`}
) .

• Priors: Non-informative.
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To improve interpretability and identifiability, rethink the lattice:

rather than multivariate observations on a bivariate lattice, con-

sider univariate observations on a stacked lattice.
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• Write the mean/variance of each conditional distribution as

E[yij|y−{ij}] = µij +
∑
k

bijkj(ykj − µkj) (left)

+
∑
`

biji`(yi` − µi`) (middle)

+
∑
k,`

bijk`(yk` − µk`) (right)

and

Var[yij|y−{ij}] = τ2
ij,
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• This formulation gives rise to a joint distribution of the form

N (µ,Σ) where

Σ =
[
In ⊗ τ1/2

] In ⊗A−

 0 BIij
. . .

B′Iij 0



−1 [

In ⊗ τ1/2
]
,

where τ1/2 = [τ1, . . . , τp]′ and

A =

 1 −ρj`
. . .

−ρj` 1

 B =

 −φ11 −φj`
. . .

−φ`j −φpp

 .



Bayesian Computation
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• Not much hope of computing posterior in closed form.

• Use computational methods (MCMC) to probe the posterior.

– The Gibb’s sampler.

– Metropolis-Hastings – accept/reject method.



MCMC
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• 3 regimes of 10K iterations each

– Regime 1: all single variable M-H with periodic updates of
the proposal distribution.

– Regime 2: ρ, φ12, and φ21 blocked M-H with periodic up-
dates of the proposal distribution.

– Regime 3: ρ, φ12, and φ21 blocked M-H with no further
updates.

• 10 chains run with random starts from the prior.

– Choose ρ and φ to yield positive-definite H.

• Sparse matrix methods (spam) crucial to computation.



φ11, φ22
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φ12, φ21
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Posterior Means
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Clustering
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Impacts
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