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Conclusion

The Robin method
——1 Lions (1990)

———1 Used to accelerate convergence of Schwarz

——1{ Free positive parameter: how to find its correct value?
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Convergence of the Robin method

Write the error as: ~ eft! = ult! — ulq,

Homogeneous case.
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Muliiplicution by error term + integration by parts:
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Convergence of the Robin method

Using:  AB= L-[(A+pB)* - (A~ pBY]

and summing over all elements and the ﬁrst M iterations:
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Implying:
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For any positive “p": what is the best choice?

Fourier analysis

—— Study simple 2D problem

—— Only 2 subdomains

——1| Fourier transform in the tangent direction fo the separating
inferface between domains

——— Solve the remaining ODE
—— Obtain convergence rate of the algorithm

Fourier analysis

Problem setting: Overlap
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(n— A)u(z,y) =0, on

Boundary conditions: solution decays af infinity

Subdomains:

0 =[—00,L] x Rand Q25 = [0,00] X R




Fourier analysis

Two subproblems:
(A | in , (g A TR0 in Qg,
WH(Ly) = ui(Ly) onTw, w0y = ul(0,y) onTa.
Fourier transforming in the y direction:
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Solving in the x direction:
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Convergence rate of classical Schwarz (Gander 2006 SINUM):

Pcla = pcla(ka n, L) —lell il

Remarks about convergence rate

Pcla = Pcza(km, L) =@n filgite

——1{ Converges for all frequencies
——1 s a smoother: damps quickly high frequencies
—— Convergence depends on eta and overlap size

—— For no overlap the algorithm does not converge

Optimized approach

—— Inspired by the Robin problem:
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We are looking for the best possible forms of in Fourier space

Proceeding as before leads to the solutions:  ( o,(k) = 7(5.) )
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New convergence rate:

Popt = popt(k7 7, L)

Optimized approach

The choice

\/ k2 +T], O'Q(k‘) = —

e algorithm in 2 iterations
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leads to the cofivergenc )

The operators are not local operators in physical space!

An approximation is sought such that all
frequencies have an optimal decay rafe:

ai"" (k) = p1 + @1k?, o5™"




Various choices (one sided)

Convergence

rates

Taylor zeroth order: o (k) = V1
app 1 2
Taylor second order: o1™'(k) = vii+ 52k
Zeroth order optimized: k(L. p) = YL FL(* — )

i
p000(kmin, L,n,0*) = pooo(k(p*), L,n,p")

Zeroth order optimized (no overlap): »* = (¥ + ) (B2 + 1)

Details see Gander (SINUM 2006)

Second order optimized: very long and complex formulas for p and g ...
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Taylor zeroth order and second order

Optimized zeroth and second order with two-
sided zeroth order

Examples for FDM

u—Au =0, on[0,1] x [0,1], u(0) =u(l) =0

——— 2 subdomains
—— 2nd order Laplacian

1 Meshspacng 1 = 1/30
——— Optimization done at the matrix level (SGT 2006 SISC)

Examples for FDM: ORAS
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Examples for FDM: OMS
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HOMs: spectral elements HOMs: spectral elements
——1 Galerkin idea: identical to FEM Reference element:
—— High-order basis on each element il il
—— Integrafion with Gauss- I.egendre Lobatto quadratures
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HOMs: spectral elements

Asymptofic behavior

L

k(M~LA) h N
AS, no overlap O™ | O(N?)
SS, no overlap oY | O(N?)
000, no overlap | O(h~Y2) | O(N)
002, no overlap | O(h~1/4) | O(N1/?)

~—1 Number of subdomains dependance: 1/H?
——— Removed by coarse solver.
—— Opfimal is the Q1 fem problem on GLL mesh (S.D. Kim 2006)
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Held-Suarez

Time discretization

——1  Semi-implicit time discretization

—1 Leads to positive definite Helmholiz problem to solve at each
time step

——— Optimized Schwarz with tangential derivative used
——— Results on Blue Gene/L machine
—— Held-Suarez test case

Purullel performunce BG/ |

BT | P ——1 Asimple modification to dlassical Schwarz leads to a faster

—S—Epl cit copro rmode
—%— Sel m| implicif l p or mode (002)

o] | 2 Someimplit opross PO converging solver

—8— Semi—implicil vinual node mode (002)
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——1{ This is an easy intervention in a model
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——1 With coarse solver, optimized Schwarz is nearly opfimal: no
need to keep constant overlap (none is required!)

Speedup
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—— Good performance in a general circulation model
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——— Future work: semi-discrete optimizafions, rate of convergence for
SEM and optimal control (S.D. Kim)
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