
by
Amik St-Cyr

(PART-2)

From classical to 
optimized Schwarz

The quest for cheaper and faster preconditioning

Part 2:

Part 2:
The Robin method

Fourier analysis of Classical Schwarz

Fourier analysis for optimized Schwarz

Optimization over all Fourier modes

Examples FDM

High-Order methods (HOMs)

Optimized Schwarz in a massively parallel GCM

Conclusion

The Robin method
Lions (1990)

Used to accelerate convergence of Schwarz

Free positive parameter: how to find its correct value?

Convergence rate not demonstrated theoretically
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Convergence of the Robin method
e
k+1
j = u

k+1
j − u|Ωj

ek+1
j − ∆ek+1

j = 0

pek+1
j +

∂ek+1

j

∂njl
= pek

l + ∂ek
l

∂njl
on ∂Ωj ∩ ∂Ωl for l ∈ N (Ωj)

ek+1
j = 0 on ∂Ωj ∩ ∂Ω

Write the error as:

Homogeneous case:

Multiplication by error term + integration by parts:
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Convergence of the Robin method
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For any positive “p”: what is the best choice?

Fourier analysis

Study simple 2D problem

Only 2 subdomains

Fourier transform in the tangent direction to the separating 
interface between domains

Solve the remaining ODE

Obtain convergence rate of the algorithm 

0 L

Overlap

Ω1 Ω2

Γ12Γ21

Boundary conditions: solution decays at infinity

Ω1 = [−∞, L] × R and Ω2 = [0,∞] × R

(η − ∆)u(x, y) = 0, on Ω

Subdomains:

Problem setting:

Fourier analysis



Fourier analysis
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1 = 0 in Ω1, (η + k2
− ∂xx)ûn+1
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Two subproblems:

Fourier transforming in the y direction:

Solving in the x direction:

Convergence rate of classical Schwarz (Gander 2006 SINUM):

Remarks about convergence rate

Converges for all frequencies

Is a smoother: damps quickly high frequencies

Convergence depends on eta and overlap size

For no overlap the algorithm does not converge

ρcla = ρcla(k, η, L) = e−
√

k2+ηL

Optimized approach
Inspired by the Robin problem:
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We are looking for the best possible forms of in Fourier space
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1 (0, k)

ρopt = ρopt(k, η, L) =
σ1(k) −

√

k2 + η

σ1(k) +
√

k2 + η

σ2(k) +
√

k2 + η

σ2(k) −
√

k2 + η
e−2

√

k2+ηL

New convergence rate:

Optimized approach
The choice

σ1(k) =
√

k2 + η, σ2(k) = −
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leads to the convergence of the algorithm in 2 iterations ρopt = 0

The operators are not local operators in physical space!

An approximation is sought such that all 
frequencies have an optimal decay rate:
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Various choices (one sided)
Taylor zeroth order:

Taylor second order:

Zeroth order optimized:

Second order optimized: very long and complex formulas for p and q ...

Details see Gander (SINUM 2006)
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Zeroth order optimized (no overlap):

Convergence rates
OPTIMIZED SCHWARZ METHODS 705
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Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the

Classical Schwarz

Taylor zeroth order and second order
Optimized zeroth and second order with two-

sided zeroth order 

Examples for FDM

2 subdomains

2nd order Laplacian

Mesh spacing 

Optimization done at the matrix level (SGT 2006 SISC)

u − ∆u = 0, on [0, 1] × [0, 1], u(0) = u(1) = 0

h = 1/30

Examples for FDM: ORAS
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Examples for FDM: OMS
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Examples for FDM: OMS
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HOMs: spectral elements
Galerkin idea: identical to FEM

High-order basis on each element

Integration with Gauss-Legendre-Lobatto quadratures
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HOMs: spectral elements
Reference element:
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HOMs: spectral elements
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Number of subdomains dependance: 

Removed by coarse solver.

Optimal is the       fem problem on GLL mesh (S.D. Kim 2006)

Asymptotic behavior
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Momentum:

Thermodynamic:

Hydrostatic:

Cubed sphere

Spectral 
element



Time discretization

Semi-implicit time discretization

Leads to positive definite Helmholtz problem to solve at each 
time step

Optimized Schwarz with tangential derivative used

Results on Blue Gene/L machine

Held-Suarez test case

Held-Suarez

Parallel performance BG/L
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Conclusion
A simple modification to classical Schwarz leads to a faster 
converging solver

This is an easy intervention in a model

With coarse solver, optimized Schwarz is nearly optimal: no 
need to keep constant overlap (none is required!)

Good performance in a general circulation model

Future work: semi-discrete optimizations, rate of convergence for 
SEM and optimal control (S.D. Kim)


