From classical to optimized Schwarz

by
Amik St-Cyr
National Center for Atmospheric Research
CISL/SCD/CSS

Plan of presentation

Part 1:
- Motivation of DDM
- Partitioning algorithms
- Classical Schwarz algorithm
- Matrix/discrete level
- Convergence
- Two level approach

Part 2:
The Robin method
Fourier analysis of Classical Schwarz
Fourier analysis for optimized Schwarz
Optimization over all Fourier modes
Examples FDM
High-Order methods (HOMs)
Optimized Schwarz in a massively parallel GCM
Conclusion
Part 1:
- Motivation of DDM
- Partitioning algorithms
- Classical Schwarz algorithm
- Matrix/discrete level
- Convergence
- Two level approach

DDM Motivation
- The global problem cannot fit into main memory, out of core computations: very slow swapping to disk
- (AND | OR) Concurrency can be exploited to solve the global problem: solving problem faster on parallel computers
- (AND | OR) The solution of the subproblems is “easier” than the global problem: direct methods on smaller subproblems cache friendly

Domain Decomposition
- Divide and conquer applied to PDEs:
- **Decompose** domain into many sub-domains
- **Solve** independently each smaller problem
- **Glue** the solutions together: convergence?

\[\Omega \]
\[Lu = f \]
Mesh partitioning: decompose the domain

- Geometric Based Algorithms
- Coordinate bisection
- Inertia bisection
- Graph Theory Based Algorithms
 - Graph bisection
 - Greedy algorithm
 - Spectral bisection
 - K-L algorithm
- Other Partitioning Algorithms
 - Global optimization algorithms
 - Reducing the bandwidth of the matrix
 - Index based algorithms
- The State of the Art
 - Hybrid approach
 - Multilevel approach
 - Parallel partitioning algorithms

Example: spectral bisection

\[
Lx = \begin{bmatrix}
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
\end{bmatrix} \quad x = \lambda x
\]

- Needs to be an eigenvector of Laplacian
- If composed of half +1 and half -1 it satisfies the two constraints
- Finding the Fielder vector: Lanczos algorithm
- Proceed recursively...

Practical DDM

Each part of problem solved on a compute node:

Partitioned meshes

Examples from Computational Fluid Dynamics: ParMetis

Courtesy of McGill’s CFD laboratory
Mesh partitioning

- Represents only the technical part of DDM
- Has deep ties with parallel computing: MIMD
- DDM denotes also the development of special algorithms to solve decomposed problems
- Algorithms: Schwarz, FETI, sub-structuring ...

Domain Decomposition

- Divide and conquer applied to PDEs
- Decompose domains into many sub-domains
- Solve independently each smaller problem
- Glue the solutions together: convergence?

Basic DD methods

(Overlapping) Schwarz (1870): existence of elliptic problems on non trivial domains

(Non-overlapping) Schur / sub-structuring methods

Kron (53) Przemieniecki (63)

2 classes of methods: overlapping and non-overlapping

Classical Schwarz

Suppose we need to solve:

\[Lu = f \text{ in } \Omega, \quad Bu = g \text{ on } \partial \Omega \]

Partition the original domain into 2 domains:

\[
\begin{align*}
L u_1^{n+1} &= f \text{ in } \Omega_1, \\
L u_2^{n+1} &= f \text{ in } \Omega_2, \\
B(u_1^{n+1}) &= g \text{ on } \partial \Omega_1, \\
B(u_2^{n+1}) &= g \text{ on } \partial \Omega_2, \\
 u_1^{n+1} &= u_2^n \text{ on } \Gamma_{12}, \\
 u_2^{n+1} &= u_1^n \text{ on } \Gamma_{21}.
\end{align*}
\]
\[\Delta u = 0, \text{ on } [-1, 1] \text{ with } u(-1) = u(1) = 0 \]
\[\Delta u = 0, \text{ on } [-1, 1] \text{ with } u(-1) = u(1) = 0 \]
\[\Delta u = 0, \text{ on } [-1, 1] \text{ with } u(-1) = u(1) = 0 \]
\(\Delta u = 0, \) on \([-1, 1]\) with \(u(-1) = u(1) = 0\)
\[\Delta u = 0, \text{ on } [-1, 1] \text{ with } u(-1) = u(1) = 0 \]

Schwarz no overlap

Matrix formulation

Continuous problem:
\[
\begin{align*}
\mathcal{L} u_1^{n+1} &= f \text{ in } \Omega_1, \\
B(u_1^{n+1}) &= g \text{ on } \partial \Omega_1, \\
A_1 u_1^{n+1} &= f_1 + B_{21} u_2^n
\end{align*}
\]
\[
\begin{align*}
\mathcal{L} u_2^{n+1} &= f \text{ in } \Omega_2, \\
B(u_2^{n+1}) &= g \text{ on } \partial \Omega_2, \\
A_2 u_2^{n+1} &= f_2 + B_{12} u_1^n
\end{align*}
\]

Partition of unity: \(e = \bar{R}_1^T e_1 + \bar{R}_2^T e_2 \rightarrow u_1^{n+1} = \bar{R}_1^T u_1^{n+1} + \bar{R}_2^T u_2^{n+1} \)

Restriction operator:
\[u_k^n = R_k u \]
Matrix formulation

If consistent then: \(A_1 R_1 - B_2 R_2 = R_1 A, \quad A_2 R_2 - B_1 R_1 = R_2 A. \)

Leading to:

\[
\tilde{u}^{n+1} = u^n + \sum_{i=1}^{2} \tilde{R}_i A_i^{-1} R_i (f - A u^n)
\]

RAS: Restricted Additive Schwarz
- Nonsymmetric
- Default option in PETSC
- Cai and Sarkis (1997)
- Equivalent to continuous

AS: Additive Schwarz
- Symmetric
- No continuous equivalent (EG02)
- Use with Krylov accelerator
- Nepomnyaschikh (86)

Preconditioning in Krylov methods:

\[
M_{RAS}^{-1} = \sum_{i=1}^{K} \tilde{R}_i A_i^{-1} R_i \quad M_{AS}^{-1} = \sum_{i=1}^{K} R_i^T A_i^{-1} R_i
\]

- In practice the restriction and extension are not created
- Matrix Problem can be reformulated: lower operation counts

Convergence theory

For symmetric positive definite matrices
- No results for Restricted Additive Schwarz
- Convergence rate not optimal
- Convergence rate not scalable

Developed by Lions, Dryja, Widlund, BRamble, Pasciak, Wang, Xu, Zhang etc ...

Subdomain diameter: \(H = \max_{1 \leq i \leq K} \text{diam}(\Omega_i) \)

Mesh size: \(h \)

Overlap size: \(\beta H, \beta \in (0, 1] \)

Convergence of PCG: \(||u^{(k)} - u^*|| \leq 2 \gamma^k ||u^{(0)} - u^*|| \)

where \(\gamma = \frac{\sqrt{\kappa(M^{-1}A) - 1}}{\sqrt{\kappa(M^{-1}A) + 1}} \)
Convergence additive Schwarz

\[\kappa(M^{-1}_{AS}A) \leq CH^{-2}(1 + \beta^{-1}) \]

- Diameter tends to zero as the number of subdomain increases
- The overlap size does not remove the diameter problem
- Estimate worsen when A has varying coefficients: \(\nabla \cdot (a(x) \nabla u) \)
- Diameter dependence prevents algorithmic scalability
- Schwarz didn’t care about the scalability!

Scalable/Optimal DDM algorithm

- A DDM is scalable if its rate of convergence does not deteriorate when the number of subdomains grows.
- A DDM for the solution of a linear system is optimal if its rate of convergence to the exact solution is independent of the size of the system.

The first definition involves \(H \)

The second involves \(h \)

Practical scalability

\[\Omega \]

\[Lu = f \]

If scalable the solution is reached 4 times faster!

If additive Schwarz is used it takes the half time to solve!!

Two level methods

- Add a very coarse problem solved on the entire domain
- Removes completely the subdomain diameter problem
- Not easy to parallelize! (Duplication of coarse solves)

\[M^{-1}_{AS,2} = R_H^T A_H^{-1} R_H + \sum_{i=1}^{K} R_i^T A_i^{-1} R_i = \sum_{i=0}^{K} R_i^T A_i^{-1} R_i \]

Condition number: \[\kappa(M^{-1}_{AS,2}A) \leq C(1 + \beta^{-1}) \]

Varying coefficients: \[C(\beta)(1 + \log(H/h), C(\beta)(H/h) \]
Two level methods

- Still not perfect since overlap must be kept constant!
- The perfect method would have zero overlap and a condition number independent of H and h
- Is it possible to construct such a Schwarz method ??
- If not how close can we get?

Part 2:

- The Robin method
- Fourier analysis of Classical Schwarz
- Fourier analysis for optimized Schwarz
- Optimization over all Fourier modes
- Examples FDM
- High-Order methods (HOMs)
- Optimized Schwarz in a massively parallel GCM
- Conclusion

DDM sources

Domain Decomposition
Barry Smith, Nathan Orevad, and William Gropp