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| Motivation of DDM

1 Partitioning algorithms
1 Classical Schwarz algorithm
| Matrix/discrete level
—— Convergence

| Two level approach

DDM Motivation

—— The global problem cannot it info main memory, out of core
computations: very slow swapping to disk

~——{ (AND | OR) Concurrency can be exploited to solve the global
problem: solving problem faster on parallel computers

——| (AND | OR) The solufion of the subproblems is “easier” than the
global problem: direct methods on smaller subproblems
cache friendly
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Domain Decomposition

|
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|

gtz if
—— Divide and conquer applied to PDEs:

——— Decompose domain info many sub-domains

——— Solve independently each smaller problem
——— Glue the solutions together: convergence?




Example: speciral bisection

Laplacian

Mesh partitioning: decompose the domain

® Geometric Based Algorithms
® Coordinate bisection
® |nertia bisection
® Graph Theory Based Algorithms
® Graph bisection
® Greedy algorithm
® Spectral bisection

® HI @ I |= -1 -1 4 -1 -1 ael==l B\e

® KL algorithm o |
® Other Partitioning Algorithms z;) =0 (z:)2 =n
® Global optimization algorithms ;( ) ;

® Reducing the bandwidth of the matrix
® [ndex based algorithms
® The State of the Art

® Needs to be an eigenvector of Laplacian
. ® |f composed of half +1 and half -1 it safisfies the two constraints
e ermach ® Finding the Fielder vector: Lanczos algorithm
o Multilevel approach |
® Parallel partitioning algorithms ® Proceed recurswely...

Practical DDM

Each part of problem solved on a
compute node:

les from Computational Fluid Dynamics: ParMefis

Courfesy of McGill's CFD laboratory




Mesh partitioning

———| Represents only the technical part of DDM
~——| Haos deep fies with parallel computing: MIMD

—— DDM denotes also the development of special algorithms to
solve decomposed problems

——— Algorithms: Schwarz, FETI, sub-structuring ...

Domain Decomposition

—— Divide and conquer applied to PDEs

——| Decompose domains into many sub-domains
——— Solve independently each smaller problem
—— Glue the solutions together: convergence?

Basic DD methods

Classical Schwarz

'_ﬁ'f'_. (Overlapping) Schwarz (1870): existence of elliptic problems on
g non trivial domains

[# (Non-overlapping) Schur / sub-structuring methods

Przemieniecki
(63)

Suppose we need fo solve:
e A oHEAMIIAY S5ttt oy 1|51

Partition the original domain into 2 domains:

R LA i L A
SERENIE=g || on 691, B(ugtH)l = HigHNSRcE
71LJr1 = wuy on Iy, n+1 = ||| o nx NIEEH




Schwarz with large overlap
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Schwarz with large overlap

Schwarz with large overlap
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Schwarz with large overlap
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Overlap Overlap
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Schwarz no overlap

Schwarz no overlap

Continuous problem:

ket L e 2 Lottt = F inQ,
sttty st on | a2l ||| Gl =t otleades
fu’;H_l i ’ll/g on F127 UgH_l == U? on I'sq.

1 1
Ault = £ + Bauj Auit! = £, + Biou?

Partition of unity: e = Rles + Ri e — u™*" = R{ui™™ + RIug ™!

n

Restriction operator: u; = Rpu




Matrix formulation Matrix formulation

Ik comsistenk itz gttt LU gt b At It sttFleah L gl On multiple domains:

K

2 n+l _ ..n PT A—11n. 1 n

Leading to: wt =t 4 YT RTATIR(f - AuT) LT e +ZR7J AR it
7=1ll

=1
Preconditioning in Krylov methods:

I K K
RAS: Restricted Additive Schwarz AS: Additive Schwarz RT — RY Mﬁ,}x L Z RzT Az'_l R, Mjblw Il Z RZT Ai_l R,

® Nonsymmetric ® Symmetric e T

® Default option in PETSC * No continuous equivalent (EG02) i (i

® (ai and Sarkis (1997) e Use with Krylov accelerator ® |n practice the restriction and extension are not created

e Equivalent fo continuous o Nepomnyaschikh (86) ® Matrix Problem can be reformulated: lower operation counts

Convergence theory Convergence additive Schwarz

Convergence of P(G: ||z™® — uw*|| < 2¢%||u(® — u7|]
——1 For symmetric positive definite matrices \/TA) Hiffi
——  No results for Restricted Additive Schwarz Sohvd ikong Where v = Ve(M-TA) + 1
~——| Convergence rate not optimal bt Subdomain diameter:  H = max_diam(Q)
—— Convergence rate not scalable ph(ll L
——— Developed by Lions, Dryja, Widlund, BRamble, Pasciak, Wang, Overlap size: BH. B (0.1]

Xu, Zhang efc ...




Convergence additive Schwarz

Scalable/Optimal DDM algorithm

k(MysA) <CH (1

—— Diameter tends to ze e number of subdomain increases
—— The overlap size does not remove the diameter problem

—— Estimate worsen when A has varying coefficients: ¥ - (a(x)Vu)
——— Diameter dependence prevents algorithmic scalability

——— Schwarz didn't care about the scalability!

—— ADDMis scalable if its rate of convergence does not deteriorate
when the number of subdomains grows.

———1 A DDM for the solution of a linear system is optimal if its rate of
convergence to the exact solution is independent of the size of
the system.

The first definition involves H
The second involves h

Practical scalability

l E;xg' G;’XE If scalable the solufion i
oOOad I scalable -esouwn is
| E= - reached 4 times faster!
0000 el
i T

If additive Schwarz is used it

F takes the half time to solve!!

Two level methods

—— Add a very coarse problem solved on the entire domain
—— Removes completely the subdomain diameter problem
———| Not easy to parallelize! (Duplication of coarse solves)
K K
Mys,=REAR'Re+) RTAT'R, =) RTAT'R;
i i
K(Mas,4) < C1+67Y)

C(B)(1 +1log(H/h), C(B)(H/h)

Condition number:
Varying coefficients:




Two level methods

The Robin method

Fourier analysis of Classical Schwarz

—— Still not perfect since overlap must be kept constant!

Fourier analysis for optimized Schwarz

——— The perfect method would have zero overlap and a condition
number independent of H and A

Optimization over all Fourier modes

Examples FDM
——1{ Isit possible to construct such a Schwarz method ??

——1 If not how close can we get?

High-Order methods (HOMs)

Optimized Schwarz in a massively parallel GCM

=== ===

Conclusion
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