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Abstract

In today’s atmospheric numerical modeling, scalable and highly accurate numerical
schemes are of particular interest. To address these issues Galerkin schemes, such as the
spectral element method, have received more attention in the last decade. They also
provide other state-of-the-art capabilities such as improved conservation. However, the
tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community
Atmosphere Model, is still a performance bottleneck. Therefore, we consider two con-
servative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third
order accurate, and allow significantly longer time steps than explicit Eulerian formula-
tions. We address the difficulties arising on the cubed-sphere projection and on parallel
computers and show the high scalability of our approach. Additionally, we use the two
schemes for the transport of passive tracers in a dynamical core and compare our re-
sults with a current spectral element tracer transport advection used by the High-Order
Method Modeling Environment.

Keywords: transport scheme, spherical geometry, cubed-sphere grid,

conservative semi-Lagrangian, spectral element method, error, parallel
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1. Introduction

In this work we give a review of two semi-Lagrangian schemes and
present new results on the use of the two schemes for passive tracer trans-
port in a state of the art dynamical core, i.e., we provide an efficient de-
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parture grid algorithm and discuss efficiency on multiple processor systems
and coupling possibilities.

In recent years, massively parallel petascale computers with hundreds
of thousands of processor cores have become available. The next generation
could have millions which allow for evermore precise modeling. However,
only very scalable applications can benefit from these powerful machines.

In the last decades global spectral methods and finite volume methods
have been the dominant methods used by atmospheric dynamical cores [1].
The dynamical core describes the fluid dynamical aspects of the atmosphere
with the aid of partial differential equations. It is not surprising that finite
volume schemes play an important role in fluid dynamical applications,
since their formulation relies on the obligatory conservation of mass con-
straint. However, scalability beyond 10000 processors is a non trivial task
for dynamical cores in atmospheric modeling [2].

In general, modeling on the sphere is not straightforward. The natural
spherical coordinates, the latitude/longitude grids, have a singularity at
the poles, i.e., clusters grid points at the poles, which also affects the per-
formance of the code. Scalability, high-order accuracy, and the request to
apply the schemes also on unstructured grids led to the adoption of Galerkin
schemes in the atmospheric scientific community [3–5]. Since a few years
the High-Order Method Modeling Environment (HOMME) [6], see also Sec-
tion 4, more precisely its spectral element (SE) dynamical core [3], has been
used by the Community Atmosphere Model (CAM, version 5.2 and higher)
– CAM-SE. CAM-SE runs as a standalone atmospheric model but it is
also the atmospheric component of the Community Earth System Model
(CESM), a state-of-the-art climate model with atmosphere, ocean, land,
and ice component models (see http://www.cesm.ucar.edu). To avoid the
pole problem, HOMME uses the cubed-sphere geometry resulting from a
gnomonic equiangular projection of the sphere [7]. This allows an efficient
partition of the sphere on parallel platforms and leads to excellent scalabil-
ity [2], i.e., tested for up to 170000 processors.

In today’s atmospheric modeling transport becomes a dominating fac-
tor of the total computational costs; e.g., more than 100 tracers are used in
the chemical version of CAM. Besides the performance question it is a non
trivial task to provide a numerical scheme such that the solution satisfies all
the criteria of the (chemistry) climate modeling community: conservation of
mass (also over long simulation times), positivity (negative values are not
acceptable), accuracy, efficiency, parallel scalability, preservation of func-
tional relations. The default time discretization in HOMME for the tracer
transport is based on an explicit Runge-Kutta approach [8]. However, this
approach requires three communications per time step with a relative small
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time step, both caused due to the explicit Runge-Kutta method. Especially
for multi-tracer transport this Eulerian type (with a fixed mesh) method is
computationally expensive and is considered to be a major computational
bottleneck of the HOMME dynamical core in the chemistry community.

Therefore it is an ongoing work to find alternative transport schemes.
Another numerical method class to realize the transport problem in fluid
dynamics is of Lagrangian type, where one follows individual parcels along
their trajectories of the fluid, i.e., the mesh travels in the fluid. A combi-
nation of the Eulerian and Lagrangian idea is called Arbitrary Lagrangian-
Eulerian (ALE) scheme and tries to benefit from both approaches. Semi-
Lagrangian schemes belong to this family. Roughly speaking they do an
interpolation from a Lagrangian mesh to a regular Eulerian mesh at ev-
ery time step. Note that a semi-Lagrangian method such as SLICE [9] is
very efficient for global multi-tracer transport problems and is based on the
conservative cascade approach [10], which is particularly designed for struc-
tured lat/lon spherical grid systems. However, the dimension-splitting cas-
cade remapping algorithm is not suitable for cubed-sphere type patched do-
mains. Therefore, HOMME considers other semi-Lagrangian type schemes.
Currently, three are implemented, all of them at a different stage of de-
velopment. A scheme based on the traditional philosophy of the semi-
Lagrangian idea uses a spectral element reconstruction followed by a global
optimization to preserve conservation of mass and monotonicity (with a
divided and conquer strategy) [11]. In this work we give a review of the
conservative SPectral-Element Lagrangian Transport (SPELT) scheme in
HOMME [12] and the Conservative Semi-LAgrangian Multi-tracer trans-
port scheme (CSLAM) in HOMME [13]. Both schemes in HOMME are
mass conservative, multi-tracer efficient, third order accurate, scalable on
parallel computers and have a positivity option. For more details see Sec-
tion 2 and Section 3, respectively. Furthermore, we will present a new cou-
pling approach to the spectral element method for the first time, e.g., using
the semi-Lagrangian schemes for passive tracer transport whereas the rest
of the dynamical core calculation is done by the original spectral element
method. For this, we introduce a special adapted departure grid algorithm
for the HOMME system.

This paper is organized as follows; Section 2 describes the flux-form
based multi-tracer efficient and conservative spectral-element Lagrangian
transport scheme (SPELT). Section 3 gives a brief overview of the conserva-
tive semi-Lagrangian multi-tracer transport scheme (CSLAM). In Section 4
we introduce the High-Order Method Modeling Environment (HOMME)
and describe the SPELT and CSLAM algorithm in this environment. Nu-
merical examples show for both schemes the third order accuracy, the multi-
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tracer efficiency, and the high scalability on parallel computers. An eco-
nomical departure grid algorithm for HOMME and the spectral-element
grid is derived in Section 5. Finally, Section 6 shows first results using the
semi-Lagrangian schemes for passive tracer transport with spectral-element
dynamics. Some conclusions can be found in Section 7.

2. SPectral-Element Lagrangian Transport

The SPELT scheme described in [12] is based on the multi-moment
semi-Lagrangian scheme of [14]. SPELT is a third order accurate flux form
scheme, which uses a biquadratic polynomial reconstruction (2D) on a sin-
gle Eulerian cell. This local stencil avoids the use of a wider halo region.
Together with an easy search algorithm, which is needed to find the fluxes,
the SPELT approach is very attractive for non-uniform grids. In [12] we
show that the scheme works on non-uniform quadrilateral grids with a pos-
itivity preservation option. Additionally, we discuss how the scheme can
be made monotonic with a flux-corrected transport approach in the spirit
of [15]. The implementation in HOMME and some high performance as-
pects are discussed later in Section 4. First we want to describe the basic
feature of the scheme on a uniform Cartesian grid.

The flux-form transport equation for a scalar ψ(x, y, t) in 2D Cartesian
(x, y)-plane, without a source or sink, reads

∂ψ

∂t
+
∂(uψ)

∂x
+
∂(vψ)

∂y
≡ ∂ψ

∂t
+∇ · F = 0 t ∈ (0, T ],(1)

where (u, v) =: u is the wind velocity vector, F = (ψu, ψv) is the flux,
(0, T ] the time interval with T > 0, and the initial condition is prescribed
as ψ(x, y, t = 0) = ψ0(x, y) at time t = 0. However, for non-divergent flow
fields, a regular semi-Lagrangian approach, which is not constrained to be
conservative, uses the following simple form:

Dψ

Dt
= 0, ⇒ ψn+1 = [ψn]∗,(2)

where the second equation indicates a semi-Lagrangian time discretization,
and D/Dt := ∂t +u ∂x + v ∂y is the Lagrangian (material) derivative. Here,
ψn+1 is the estimate of ψ at the new time-level tn+1 from known values ψn

at time tn = n∆t, where ∆t is the time step. Usually ψn+1 is computed by
an interpolation at the foot of the trajectory (upstream position), in (2) this
is denoted as [·]∗. SPELT benefits from both formulations, i.e., (1) ensures
mass conservation of a quantity in a cell and the classical semi-Lagrangian
scheme (2) is used to get a high order scheme. Let us consider a domain
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Figure 1. Figure (a) shows the multi-moment polynomial reconstruction stencil of
SPELT, which has nine degrees of freedom on each cell. The quantity ψ

n
k is the prog-

nostic variable. It is used for the reconstruction but updated by a classical flux form
semi-Lagrangian approach to ensure mass conservation. The eight points on the edges are
updated through a regular semi-Lagrangian approach along the trajectories. Figure (b)
shows the flux approximation along the characteristics during the time t ∈ [tn, tn+1] by
the 3-point Simpson’s rule. The flux on the west (W) edge (bold) of the cell Ak is also
approximated with the aid of a 3-point Simpson’s rule.

integrate (1) spatially over the cell Ak ∈ T and temporally over the time
interval [tn, tn+1] we get

∫ tn+1

tn

∫

Ak

(
∂ψ

∂t
+ ∇ · F

)
dx dy dt = 0.

If we write ψ
n
k for the integral mean of ψ(x, y, tn) in the cell Ak at time tn

the divergence theorem leads to the finite volume formulation

ψ
n+1
k |Ak| = ψ

n
k |Ak| −

∫ tn+1

tn

(∮

∂Ak

F · n ds

)
dt,(3)

where n is the unit normal vector on the boundaries ∂Ak of Ak pointing out-
ward with respect to Ak. Note that (3) describes the mass balance, i.e., the
mass at time tn+1 depends on the mass at time tn plus some inflow/outflow
fluxes. The accuracy and efficiency (stability) of the discretization of (3)
depend on the line and time integrals. Following [14] we use a multi-moment
reconstruction with nine degrees of freedom on each cell, see Figure 1(a).
This polynomial reconstruction includes eight point values on the corners
and edges on each quadrilateral Ak, which are evolved in time and are up-
dated trough (2). The cell average ψ

n
k is the ninth degree of freedom. It is
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Ω ⊂ R2. The triangulation of Ω into quadrilaterals is denoted by T . If we
integrate (1) spatially over the cell Ak ∈ T and temporally over the time
interval [tn, tn+1] we get

∫ tn+1

tn

∫

Ak

(
∂ψ

∂t
+∇ · F

)
dx dy dt = 0.

If we write ψ
n
k for the integral mean of ψ(x, y, tn) in the cell Ak at time tn

the divergence theorem leads to the finite volume formulation

ψ
n+1
k |Ak| = ψ

n
k |Ak| −

∫ tn+1

tn

(∮

∂Ak

F · n ds
)
dt,(3)

where n is the unit normal vector on the boundaries ∂Ak of Ak pointing out-
ward with respect to Ak. Note that (3) describes the mass balance, i.e., the
mass at time tn+1 depends on the mass at time tn plus some inflow/outflow
fluxes. The accuracy and efficiency (stability) of the discretization of (3)
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reconstruction with nine degrees of freedom on each cell, see Figure 1(a).
This polynomial reconstruction includes eight point values on the corners
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and edges on each quadrilateral Ak, which are evolved in time and are up-
dated trough (2). The cell average ψ

n
k is the ninth degree of freedom. It is

updated through (3) and is at the same time the conservative prognostic
variable we are looking for. The explicit form of the coefficients in terms of
nine values can be found in [16]. We note that the reconstruction is globally
continuous. The last term in (3) can be written as

∫ tn+1

tn

(∮

∂Ak

F · n ds
)
dt =

∮

∂Ak

F̃ · n ds,(4)

where F̃·n may be interpreted as exact evolution of fluxes on the boundaries
∂Ak along the characteristics during the time t ∈ [tn, tn+1] as indicated
in Figure 1(b) for one edge (bold, west edge) of ∂Ak. We use a 3-point
Simpson’s rule to get

F̃ =

∫ tn+1

tn
F(t) dt ≈ ∆t

6

(
F(tn) + 4F(tn+1/2) + F(tn+1)

)
.

Here, the fluxes at the departure point at tn and the midpoint at tn+1/2 are
computed using the polynomial reconstruction. Since the reconstruction is
locally defined on each cell we need to know the cells which contain these
points, see Figure 1(b). Note that the departure and midpoint points are
for all tracers the same. Therefore we have to do this search only once per
time step, which makes the scheme multi-tracer efficient. For the final flux
integral over one edge of F̃·n in (4) we use again the 3-point Simpson’s rule,
i.e., we need three fluxes F̃xi , i = {1, 2, 3} along the trajectories arriving in
x1, x2, and x3, respectively, see Figure 1(b). Thus the flux at the west edge
(W) reads

FW =
hW
6

(
F̃x1 + 4F̃x2 + F̃x3

)
,

where hW denotes the length of the edge W. Applying the same approx-
imation for the other edges {S,E,N} of Ak the final third order SPELT
scheme reads

ψ
n+1
k |Ak| = ψ

n
k |Ak| − (FW + FS + FE + FN ).(5)

Note that the integral approximation can be done also with Gaussian
quadrature points. The number of point searches and polynomial evalu-
ations depend on the order of the quadrature rule. However, flux schemes
have the strong property that they ensure mass conservation no matter
how we approximate fluxes. Nevertheless, it is important to know for par-
allelization that if the flux approximation on an edge E is done separately

76

Unauthenticated
Download Date | 10/4/16 3:04 PM



Scalable, conservative, multi-tracer efficient semi-Lagrangian schemes
DOI: 10.1685/journal.caim.XXX

Dk

Ak

(a) Departure cell Dk and
arrival cell Ak.

Al
Dkl

Ak

(b) Overlap area Dkl =
Dk ∩ Al.
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Figure 2. The departure cell Dk moves in one time step to the (Eulerian) arrival cell
Ak in (a). For simplicity, we approximate the departure cell by connecting the departure
points with straight lines. The overlap areas as in (b) are used to calculate the integral
over the departure cell Dk. Figure (c) shows the 5 × 5 stencil, which is needed for the
reconstruction in one cell (black) for the third order accurate CSLAM scheme.

more details on the flux approximation, in particular in the more difficult
case of non-uniform grids, we refer to [12].

There, one can also find details on a quasi-monotone semi-Lagrangian
(QMSL) filter and the flux-corrected transport (FCT) philosophy. The
QMSL filter is a classical a posteriori filter, local, and very easy to im-
plement. It guarantees that the newly computed point values are always
within legitimate bounds and helps to control unphysical oscillations. How-
ever, QMSL is not enough to preserve positivity. The FCT technique was
introduced by [15] to get monotonicity and a simple positivity preserva-
tion approach can be found in [17]. In this work we will apply the simple
positivity preservation and the QMSL filter.

3. Conservative Semi-LAgrangian Multi-tracer transport scheme

In this section we give a brief overview of CSLAM [13,18]. CSLAM is an
incremental remapping algorithm based on the idea of the works [19–21].

Note that (1) can be cast equivalently in the following Lagrangian form

D

Dt

∫

A(t)
ψ dx dy = 0,(6)

where A(t) is an arbitrary area (volume) moving with the fluid in which
the fluid density ψ evolves in time along the Lagrangian trajectories (char-
acteristics). CSLAM is based on the upstream semi-Lagrangian method.
That means parcels that end up on the regular Eulerian grid T are con-
sidered. Let us write Ak ∈ T for the arrival cell with the corresponding
departure cell Dk, i.e., Dk moves in one time-step to Ak, see Figure 2(a).
We remark that we fix the arrival grid T (Eulerian), thus our scheme is a
semi-Lagrangian scheme with backward trajectories.

7
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on cells, which share E, it has to be the same up to machine precision. For
more details on the flux approximation, in particular in the more difficult
case of non-uniform grids, we refer to [12].

There, one can also find details on a quasi-monotone semi-Lagrangian
(QMSL) filter and the flux-corrected transport (FCT) philosophy. The
QMSL filter is a classical a posteriori filter, local, and very easy to im-
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tion approach can be found in [17]. In this work we will apply the simple
positivity preservation and the QMSL filter.
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where A(t) is an arbitrary area (volume) moving with the fluid in which
the fluid density ψ evolves in time along the Lagrangian trajectories (char-
acteristics). CSLAM is based on the upstream semi-Lagrangian method.
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We remark that we fix the arrival grid T (Eulerian), thus our scheme is a
semi-Lagrangian scheme with backward trajectories.

A temporal discretization of (6) along the characteristics and approxi-
mation of ψ in Dk leads to the discrete scheme

ψ
n+1
k |Ak| =

∫

Dk

ψn
k,rec dx.(7)

Here, ψ
n+1
k is the average tracer in Ak at time step tn+1 and ψn

k,rec a certain
reconstruction. To get a high order numerical scheme, ψn

k,rec has to be
a high order reconstruction from the cell averages of the previous time
step tn. CSLAM uses a T -piecewise two-dimensional polynomial of degree
two, where the coefficients are defined in terms of a Taylor expansion. The
gradient and curvature are approximated using finite differences from the
known cell averages ψ

n
k . Note that we need this approximation in each

coordinate direction as well as the cross derivative. The stencil, which is
needed for third order accuracy, is shown in Figure 2(c). The constant term
in the reconstruction is chosen such that the integral of the reconstruction
function over Ak equals the mass in that cell. For more details we refer
to [22]. Since this reconstruction is not globally continuous, one must split
the integral over Dk in (7) into the sum of integrals over overlap areas
between Dk and the regular Eulerian grid. Figure 2(b) shows one part of the
integral over Dkl = Dk ∩Al. For the CSLAM scheme the integral over Dkl

is transformed into line integrals using the divergence theorem. Finally, this

allows us to split the integral in (7) into weights ω
(i,j)
kl , which are functions

of the coordinates of the vertices of Dkl, and the reconstruction coefficients

c
(i,j)
l . Then the third order CSLAM scheme reads

ψ
n+1
k |Ak| =

Lk∑

l=1

[ ∑

i+j≤2

c
(i,j)
l ω

(i,j)
kl

]
.

The weights ω
(i,j)
kl can be re-used for each additional tracer which makes the

scheme multi-tracer efficient, since an expensive search algorithm to define
Dkl has to be done only once per time step. We remark, that conservation of

mass relies not only on the constant term of the reconstruction c
(i,j)
l but also

on satisfying integral constraints. In particular, the CSLAM scheme relies
on the analytical calculation of the interior line integrals ∂Dkl ∩ ∂Al. How-
ever, this analytical expressions are numerically unstable for high-resolution
meshes on the sphere, at least for the third order scheme. The approxima-
tion of these integrals by a more robust Gaussian quadrature might lead
to a stable scheme but also in losing of conservation of mass. The work
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work provides a stability technique, referred as enforcement of consistency,
which still preserves mass conservation and the multi-tracer efficiency. This
general strategy for remapping schemes is confirmed on a test example with
CSLAM.

As long as the upstream cells Dk are simply connected, the scheme is
stable for long time steps (CFL> 1). To get monotonicity, one can apply
the simple 2D reconstruction function filter from [24]. CSLAM scheme is
extensively tested with various standard benchmark test cases of solid-body
rotation and deformational flow, incl. on spherical geometry, see e.g. [18].

Remark 3.1. It is also possible to cast the above ideas to formulate a
semi-Lagrangian scheme based on the flux form (1) transport equation.
This has been discussed and tested in [25]. The scheme formulation is the
same as for SPELT; see (5). But the fluxes FX with X = {E, N, W, S} are
calculated with the same techniques as for the rigorous CSLAM scheme.
The flux areas AE , AN , AW , AS are indicated in Figure 3. That means that
the integral over AX with X = {E, N, W, S} can be split into weights and
reconstruction coefficients to get a multi-tracer efficient flux form scheme.
Although the flux version is much more expensive, i.e., one has to find four
searching areas instead of only one, a flux form scheme has in particular
some essential advantages, as was noted already for the SPELT scheme in
Section 2.

4. Semi-Lagrangian schemes in HOMME

In this section we describe very briefly HOMME and give an overview
of the implementation techniques from SPELT and CSLAM in HOMME.
Unlike the global scheme SLICE [9], the conservative semi-Lagrangian
schemes SPELT and CSLAM are local methods, which are well suited for
the HOMME data structure, i.e., the cubed-sphere grid and the spectral
elements. Some error and scalability discussions are reported in the last
subsection.
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work provides a stability technique, referred as enforcement of consistency,
which still preserves mass conservation and the multi-tracer efficiency. This
general strategy for remapping schemes is confirmed on a test example with
CSLAM.

As long as the upstream cells Dk are simply connected, the scheme is
stable for long time steps (CFL> 1). To get monotonicity, one can apply
the simple 2D reconstruction function filter from [24]. CSLAM scheme is
extensively tested with various standard benchmark test cases of solid-body
rotation and deformational flow, incl. on spherical geometry, see e.g. [18].

Remark 3.1. It is also possible to cast the above ideas to formulate a
semi-Lagrangian scheme based on the flux form (1) transport equation.
This has been discussed and tested in [25]. The scheme formulation is the
same as for SPELT; see (5). But the fluxes FX with X = {E, N, W, S} are
calculated with the same techniques as for the rigorous CSLAM scheme.
The flux areas AE , AN , AW , AS are indicated in Figure 3. That means that
the integral over AX with X = {E, N, W, S} can be split into weights and
reconstruction coefficients to get a multi-tracer efficient flux form scheme.
Although the flux version is much more expensive, i.e., one has to find four
searching areas instead of only one, a flux form scheme has in particular
some essential advantages, as was noted already for the SPELT scheme in
Section 2.

4. Semi-Lagrangian schemes in HOMME

In this section we describe very briefly HOMME and give an overview
of the implementation techniques from SPELT and CSLAM in HOMME.
Unlike the global scheme SLICE [9], the conservative semi-Lagrangian
schemes SPELT and CSLAM are local methods, which are well suited for
the HOMME data structure, i.e., the cubed-sphere grid and the spectral
elements. Some error and scalability discussions are reported in the last
subsection.
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work provides a stability technique, referred as enforcement of consistency,
which still preserves mass conservation and the multi-tracer efficiency. This
general strategy for remapping schemes is confirmed on a test example with
CSLAM.

As long as the upstream cells Dk are simply connected, the scheme is
stable for long time steps (CFL> 1). To get monotonicity, one can apply
the simple 2D reconstruction function filter from [24]. CSLAM scheme is
extensively tested with various standard benchmark test cases of solid-body
rotation and deformational flow, incl. on spherical geometry, see e.g. [18].

Remark 3.1. It is also possible to cast the above ideas to formulate a
semi-Lagrangian scheme based on the flux form (1) transport equation.
This has been discussed and tested in [25]. The scheme formulation is the
same as for SPELT; see (5). But the fluxes FX with X = {E, N, W, S} are
calculated with the same techniques as for the rigorous CSLAM scheme.
The flux areas AE , AN , AW , AS are indicated in Figure 3. That means that
the integral over AX with X = {E, N, W, S} can be split into weights and
reconstruction coefficients to get a multi-tracer efficient flux form scheme.
Although the flux version is much more expensive, i.e., one has to find four
searching areas instead of only one, a flux form scheme has in particular
some essential advantages, as was noted already for the SPELT scheme in
Section 2.

4. Semi-Lagrangian schemes in HOMME

In this section we describe very briefly HOMME and give an overview
of the implementation techniques from SPELT and CSLAM in HOMME.
Unlike the global scheme SLICE [9], the conservative semi-Lagrangian
schemes SPELT and CSLAM are local methods, which are well suited for
the HOMME data structure, i.e., the cubed-sphere grid and the spectral
elements. Some error and scalability discussions are reported in the last
subsection.

9

(c) Flux area AW for

FW .

DOI: 10.1685/journal.caim.XXX

AE

(a) Flux area AE for

FE .

AN

(b) Flux area AN for

FN .

AW

(c) Flux area AW for

FW .

AS

(d) Flux area AS for

FS .

Figure 3. Areas for the fluxes in different directions for the flux-from CSLAM introduced
in [25].

work provides a stability technique, referred as enforcement of consistency,
which still preserves mass conservation and the multi-tracer efficiency. This
general strategy for remapping schemes is confirmed on a test example with
CSLAM.

As long as the upstream cells Dk are simply connected, the scheme is
stable for long time steps (CFL> 1). To get monotonicity, one can apply
the simple 2D reconstruction function filter from [24]. CSLAM scheme is
extensively tested with various standard benchmark test cases of solid-body
rotation and deformational flow, incl. on spherical geometry, see e.g. [18].

Remark 3.1. It is also possible to cast the above ideas to formulate a
semi-Lagrangian scheme based on the flux form (1) transport equation.
This has been discussed and tested in [25]. The scheme formulation is the
same as for SPELT; see (5). But the fluxes FX with X = {E, N, W, S} are
calculated with the same techniques as for the rigorous CSLAM scheme.
The flux areas AE , AN , AW , AS are indicated in Figure 3. That means that
the integral over AX with X = {E, N, W, S} can be split into weights and
reconstruction coefficients to get a multi-tracer efficient flux form scheme.
Although the flux version is much more expensive, i.e., one has to find four
searching areas instead of only one, a flux form scheme has in particular
some essential advantages, as was noted already for the SPELT scheme in
Section 2.

4. Semi-Lagrangian schemes in HOMME

In this section we describe very briefly HOMME and give an overview
of the implementation techniques from SPELT and CSLAM in HOMME.
Unlike the global scheme SLICE [9], the conservative semi-Lagrangian
schemes SPELT and CSLAM are local methods, which are well suited for
the HOMME data structure, i.e., the cubed-sphere grid and the spectral
elements. Some error and scalability discussions are reported in the last
subsection.
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in [23] discusses this problem in more details for general high-order high-
resolution rigorous remapping schemes on the sphere. Furthermore, that
work provides a stability technique, referred as enforcement of consistency,
which still preserves mass conservation and the multi-tracer efficiency. This
general strategy for remapping schemes is confirmed on a test example with
CSLAM.

As long as the upstream cells Dk are simply connected, the scheme is
stable for long time steps (CFL> 1). To get monotonicity, one can apply
the simple 2D reconstruction function filter from [24]. CSLAM scheme is
extensively tested with various standard benchmark test cases of solid-body
rotation and deformational flow, incl. on spherical geometry, see e.g. [18].

Remark 3.1. It is also possible to cast the above ideas to formulate a
semi-Lagrangian scheme based on the flux form (1) transport equation.
This has been discussed and tested in [25]. The scheme formulation is the
same as for SPELT; see (5). But the fluxes FX with X = {E,N,W, S} are
calculated with the same techniques as for the rigorous CSLAM scheme.
The flux areas AE , AN , AW , AS are indicated in Figure 3. That means that
the integral over AX with X = {E,N,W, S} can be split into weights and
reconstruction coefficients to get a multi-tracer efficient flux form scheme.
Although the flux version is much more expensive, i.e., one has to find four
searching areas instead of only one, a flux form scheme has in particular
some essential advantages, as was noted already for the SPELT scheme in
Section 2.

4. Semi-Lagrangian schemes in HOMME

In this section we describe very briefly HOMME and give an overview
of the implementation techniques from SPELT and CSLAM in HOMME.
Unlike the global scheme SLICE [9], the conservative semi-Lagrangian
schemes SPELT and CSLAM are local methods, which are well suited for
the HOMME data structure, i.e., the cubed-sphere grid and the spectral
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(a) The cubed-sphere. (b) The cells for the semi-Lagrangian

schemes. The dashed lines mark the

spectral element border.

Figure 4. The cubed-sphere in (a) and the finite volume grid on the spectral element
grid on the cube faces in (b), which is projected through an gnomonic projection onto
the sphere. The cells are not equidistantly spaced as it is shown here for the sake of
simplicity.

elements. Some error and scalability discussions are reported in the last
subsection.

4.1. The High-Order Method Modeling Environment

The domain decomposition (horizontal) in HOMME follows along the
cubed-sphere grid [7] to avoid the pole problem. That means, an inscribed
cube is projected through an equiangular central (gnomonic) projection on
the surface of the sphere, see Figure 4(a). For Galerkin schemes the six
faces of the cube can be easily divided into finite-elements. They build the
natural base for the partition on parallel platforms. Therefore, the parallel
strategy in HOMME relies on the spectral elements, i.e., all cube faces are
divided in quadrilateral elements. Note that this allows also locally refined
meshes, which are in particular of interest, if one wants to resolve local
phenomena such as singularities and shock waves. A standard configuration
is based on an equidistant mesh on each face, which leads to an almost
equidistant mesh on the sphere, see Figure 4(a). For each spectral element
4 or 5 Gaussian-Legendre-Lobatto (GLL) points are used. That means the
number of unknowns for the spectral element scheme for each processor
is at least 16 or 25 if we run the model with a minimum of one spectral
element per processor. The work in [2] shows that this approach in HOMME
is highly scalable, up to 170000 processors on the Oak Ridge LCF Cray
XT5 JaguarPF system. Moreover, [2] gives a short summary on the most
important components/numerical schemes used for the dynamical core for
CAM-SE, including the vertical discretization method.
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(a) GLL Points. (b) SPELT points with

halo zone.

(c) CSLAM points with

halo zone.

Figure 5. In Figure (a) we show 5×5 GLL points for a spectral element and the exchange
points (black). Figure (b) presents the reconstruction points for SPELT on a 4 × 4 cell
grid on the spectral element including the halo zone (black points) with depth one (cell),
which allows a CFL≤ 1. And finally, Figure (c) shows the CSLAM points including the
halo zone (black points) with depth four (cells), which allows a CFL≤ 1.

The default tracer transport scheme in HOMME is built on the na-
tive spectral element discretization (locally conservative) with an explicit
Runge-Kutta based approach [8]. To avoid oscillations the scheme in the
model comes with an optimization based monotone limiter for the hp spec-
tral method. Additionally, it is coupled with a hyper-diffusion operator.
However, this leads to a relative small time step constraint and three com-
munications per time step. Therefore, for multi-tracer transport the current
configuration is computationally expensive.

4.2. SPELT and CSLAM in HOMME

With a cubed-sphere grid the transfer of SPELT and CSLAM onto the
sphere is straight forward but nevertheless not a trivial task. The search
algorithm, the reconstruction and so on in gnomonic coordinates is much
more complicated. We refer to the works [12–14,18]. If one wants to paral-
lelize these algorithms, the situation is even more delicate, which we want
to review in this subsection.

The algorithm of SPELT and CSLAM in HOMME are described and
intensively discussed in [12] and [13], respectively. Both schemes require
only one communication per time step with the concept of an extended
element. SPELT is designed for non-uniform grids since it uses a point wise
search and a local (one cell) reconstruction [12], i.e., the halo zone requires
one cell in the extended element. In this work we consider a SPELT version
on the finite volume grid of HOMME, i.e., each spectral element is divided
into cells, see Figure 4(b). The CSLAM algorithm works on the same grid.
We remark that the 5 × 5 reconstruction stencil is rather complicated to
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implement on a cube, especially on the cube corner. Therefore, CSLAM
requires a halo zone with four cells in the extended element, if one also
wants to consider the cross terms in the reconstruction and avoid additional
communication. Furthermore, the search process involved in the CSLAM
algorithm is computationally intense and challenging in complex domains.
The computational costs for the enforcement of consistency version, see
Section 3 or [23], are slightly higher than for the original CSLAM but are
negligible.

An extended element for SPELT and CSLAM can be seen in Figure 5(b)
and Figure 5(c), respectively. Here, the filled circles are the cell averages
ψ
n
k in the halo zone. The basic idea is to avoid additional communication,

since we calculate certain quantities twice, e.g., for SPELT we calculate the
fluxes on a spectral element edge once in the halo cell and once in the cell
of the corresponding element on different processors. This can be done up
to machine precision which is important to ensure mass conservation. We
remark that this was never an issue in practice. However, the technique of an
extended element increases the communication bandwidth. For CSLAM the
CFL is restricted to CFL ≤ 1 to ensure communication between neighboring
spectral elements. For SPELT one could relax this restriction to CFL ≤ 3
on the cost of a higher bandwidth and a higher order of quadrature rule [14].
However, we limit the CFL ≤ 1 also for SPELT due to some data structure
limitations in HOMME.

Remark 4.1. Perhaps the major advantages of semi-Lagrangian schemes
are to overcome strong CFL restrictions. However, for a parallelization we
think that there is the need to find a good balance between higher CFL
and the bandwidth for communication. We note that especially for CSLAM
a CFL > 1 is rather complicated to realize in HOMME due to the 5 × 5
reconstruction stencil.

In Figure 5 we see the data situation for the spectral element scheme,
SPELT, and CSLAM. The spectral element is marked as a bold square.
The different size in Figures 5(a)–(c) is because of visualization reasons.
Figure 5(a) shows the situation for the spectral element with 5×5 Gaussian-
Legendre-Lobatto (GLL) points, which is comparable with 4 × 4 cells for
the semi-Lagrangian schemes. Note that there is not a classical halo zone
necessary, instead the filled circles are communicated such that the contin-
uous constraint for the spectral element scheme is fulfilled. In Figure 5(b)
the filled squares and circles represent the points for the SPELT reconstruc-
tion with 4 × 4 cells for a spectral element. Note that the reconstruction
is globally continuous, so only the black squares and circles are in the halo
zone (the points an the boundary are already on the element). The depth of
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the halo zone is one cell which allows a CFL≤ 1. For CSLAM the situation
is illustrated in Figure 5(c). For a CFL≤ 1 we need a halo zone with four
cells. That means for a spectral element we store 25 data in the spectral
element and 16 points are sent from a different processor (here some kind
of averaging with the local points on the boundary). SPELT stores 162 and
88 points are sent from a different processor. For CSLAM we store 144 data
and 128 points come from a different processor.

Let us consider a resolution of 0.25oa on the equator, 100 tracers and
26 levels (the vertical discretization is divided in levels, i.e., we basically
consider here 26 horizontal discretizations) in the climate model CAM. The
following (overall) memory would be allocated for the standalone tracer
transport schemes; 24 101 MB (SE), 162 924 MB (SPELT) and 138 823 MB
(CSLAM). The memory usage and the halo zone values for both semi-
Lagrangian schemes are similar. However, compared to the spectral element
scheme it is huge. Nevertheless, if you divide this number by the number
of processors, the usage per processor is acceptable, since for this high
resolution you would likely need more than 1000 processors.

Remark 4.2. To apply the positivity preservation approach of [17] or any
other limiter for SPELT we need information from a cell patch. If we allow
a deeper halo zone (i.e., more values for communication) we could imple-
ment a positivity limiter without an additional communication. However,
we think this contradicts the idea to develop a scheme for non-uniform or
unstructured grids and allow therefore a second communication. This is not
true for the QMSL filter described above, which can easily be implemented
locally without any extra communication. For CSLAM, however, the nov-
elty of having only one communication per time step is valid for both, using
the scheme with and without monotonicity preserving filtering (both with
the same amount of communication data).

Remark 4.3. The HOMME algorithm of CSLAM in [13] and thus the
data structure can be used also for the flux form CSLAM described in [25].
The only difference is that one has to calculate four areas for the fluxes,
see also Remark 3.1 and Figure 3. Instead of finding the intersection of
the departure grid to the Eulerian grid, one has to find intersection to the
Eulerian grid of the flux areas. In particular, that means one has to do the
search four times instead of only one time. The reconstruction and the filter
are exactly the same.

aThe highest resolution for CAM-SE is up to 0.125o, which is considered as a very
high resolution for climate simulation.
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Figure 6. Deformational test calculated with SPELT in HOMME for a mesh size (cell
size) of 0.28o at the equator and with no monotonicity constraint. The time step is chosen
such that CFL≤ 0.8. The two Gaussian distributions return to their initial position after
12 days. The figure is taken from [12].

4.3. Error and strong scalability analysis for SPELT and CSLAM

In the following we consider the smooth deformational-flow test intro-
duced in [26]. For the initial distribution we use two Gaussian hills which
will be highly deformed through a non-divergent wind field. After 12 days
the flow deforms back to the smooth exact solution. Therefore, the numeri-
cal solution after 12 days is suitable for error and convergence studies, e.g.,
in the L1, L2, and L∞ error norms. For all test cases in this section we
choose the time step in such a way that the maximal CFL is always ≤ 0.8
(fixed) for all resolutions. For a general description of this test case we refer
to [26]. There, we can find an accurate trajectory computation algorithm
(to find the departure points), which is a combination of a Taylor series
expansion and splitting the trajectory into segments. We can apply this
algorithm in this section since the velocities are analytically known and
therefore available in any point on the sphere. In Section 5 we will discuss a
departure grid algorithm for practical applications, i.e., where the velocities
are known only on certain points.

In Figure 6 we show the time evolution of our chosen test example
for a mesh size (cell size) of 0.28o at the equator. This corresponds to
320×320 cells on one cube face. The convergence plots in Figure 7 show the
normalized L1, L2, and L∞ error norms and confirm for both schemes, that

84

Unauthenticated
Download Date | 10/4/16 3:04 PM



Scalable, conservative, multi-tracer efficient semi-Lagrangian schemes

resolution

0.07030.14060.28120.56251.1252.25

e
rr

o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1

       3      

L
1

L
2

L
∞

(a) Error SPELT

resolution

0.07030.14060.28120.56251.1252.25

e
rr

o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1

       3      
L
1

L
2

L
∞

(b) Error CSLAM.

Figure 7. The plots show the convergence order for different normalized error norms
L1, L2, and L∞ with respect to the degree resolution at the equator. As a test example
we use the deformational flow test, compare Figure 6.

they are third order accurate for a sufficient smooth initial field. The mesh
size (cell size) for the last run is 0.0703o at the equator, which corresponds
to 1280× 1280 cells on a cube face.

A more detailed error behavior discussion for both finite-volume
schemes, SPELT and CSLAM in HOMME, can be found in [12]. In terms of
accuracy both schemes lead approximately to the same relative error. How-
ever, in [12] we got the remarkable findings that for smooth fields CSLAM
seems to be slightly more accurate than SPELT, but for non-smooth or
quasi-smooth fields SPELT is slightly more accurate than CSLAM.

Note that both semi-Lagrangian schemes are built up on the spectral
element grid of HOMME. Thus we expect to benefit from the excellent scal-
ability of the horizontal decomposition of the HOMME model [2]. Figure 8
shows some (strong) scalability results on Yellowstone, which is the new
(2013) petascale computing resource in the NCAR-Wyoming Supercom-
puting Center. Yellowstone is a 1.5-petaflops high-performance computing
system with 2.6-GHz Intel Xeon Sandy Bridge processors and 2 GB mem-
ory/processorb. A standard user can allocate up to 16384 processors. For
our test we run our benchmark test using a problem size of 16224 spec-
tral elements (equidistant mesh on the cubed-sphere), which allows us to
test our algorithm for one spectral element per processor. Each of these
elements are divided in 4 × 4 cells (equidistant finite volume grid) as in
Figure 4(b). This results in 2704 spectral elements per cube face or 43264
cells. To ensure CFL≤ 1 we allow a time step of 600 seconds. For all tests we
disable I/O. Figure 8 shows the strong scalability with respect to the num-

bhttps://www2.cisl.ucar.edu/resources/yellowstone
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(a) Spelt with QMSL filter and positivity op-
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(b) CSLAM with monotonic option.

Figure 8. Both figures, taken from [12], show strong scalability for different numbers of
tracers on Yellowstone (2.6-GHz Intel Xeon Sandy Bridge processors). The test example is
the deformational-flow test similar as in Figure 6. We choose the input data in such a way
that the right most marker on each line with 16224 processors runs on the minimum of one
spectral element per processor or 16 unknowns per tracer and processor. Panel (a) shows
the results for SPELT combined with a QMSL filter and an additional positivity limiter.
This configuration results in two communication per time step in our implementation,
see also Remark 4.2. Panel (b) shows CSLAM scalability with the monotonicity option
turned on.

ber of processor. The right most marker on each line is for 16224 processors
and corresponds to one spectral element per processor or 16 unknowns per
processor and per tracer.

In Figure 8(a) we see the strong scalability results for SPELT with a
QMSL filter and the positivity preserving option turned on. This results in a
second communication, see Remark 4.2. The algorithm does not scale below
4 elements per processor and 1− 10 tracers but scales again for more than
100 tracers. We compare our results for SPELT with the strong scalability of
CSLAM on Yellowstone shown in Figure 8(b). We stress that the scalability
of CSLAM with one communication per time step is similar to the SPELT
algorithm with two communications in Figure 8(a) for a low number of
tracers and element per processor, which is due to the higher communication
load of the scheme (CSLAM gets 128 and SPELT 88 values from different
processors). Note that the SPELT algorithm with the positivity preserving
option (and therefore two communications per time step) is faster for more
tracers or more elements per processor. Increasing the number of tracers
(more than 100) leads to perfect strong scaling (0.9) also for 1 element per
processor for both schemes. All runs show also the multi-tracer efficiency
for SPELT and CSLAM. More details can be found in [12]. We also refer to
the results in [13] for the performance of CSLAM on an outdated IBM Blue

86

Unauthenticated
Download Date | 10/4/16 3:04 PM



Scalable, conservative, multi-tracer efficient semi-Lagrangian schemesDOI: 10.1685/journal.caim.XXX

xd
x∗

d

xa

Figure 9. One spectral element with one arrival point xa. With x∗
d we denote the pre-

dicted departure point from the first step of our departure point calculation. In a second
step we get the final (approximated) departure point xd. Note that from a geometrical
viewpoint xd may come from another element - which could be on another processor.

5. A departure grid algorithm for HOMME

In Section 4 we used a highly accurate algorithm to find the departure
point. There, a benchmark test was applied where the velocity field is known
(analytically) in any point and at any time. This is not met in practice.
Therefore, we introduce in this section a departure algorithm with higher
accuracy than a simple linear determination and apply our approach in Sec-
tion 6 on a baroclinic instability test. It consists of a classical Runge-Kutta
and Taylor expansion ansatz. The method is based on the one presented
in [27], where a Taylor series expansion and an approximation argument of
the total derivative leads also to an economical determination of departure
points with higher accuracy. Using derivative information from the spectral
element method, we can compute a second-order accurate estimation of the
departure point with no additional communication or time-stepping along
backward trajectories. That means, we need only the velocities at one point
but on different time levels. We also refer to the work [28], where the Tay-
lor series method [27] is compared with a Runge Kutta scheme. There, the
velocities at intermediate time levels for forward trajectories are estimated
by linear or cubic interpolation.

Remark 5.1. In this work we focus on semi-Lagrangian schemes for pas-
sive tracer transport. Thus, the dynamics, and in particular the velocities,
are solved by another scheme (here the spectral element method). That
means the velocities u = (u, v), see e.g. (1), are given by a high order
approximation on each element at time t and t + ∆t.

In the following xd denotes the departure point which moves to the arrival
point xa during the time [t, t+∆t] with the time step ∆t; see Figure 9. For
the coupling to the spectral element grid, where the velocities are given at
xa, we need an economical determination of xd. With a horizontal domain

17

Figure 9. One spectral element with one arrival point xa. With x∗d we denote the pre-
dicted departure point from the first step of our departure point calculation. In a second
step we get the final (approximated) departure point xd. Note that from a geometrical
viewpoint xd may come from another element - which could be on another processor.

Gene/L system with a much slower CPU per processor. This machine had
4096 processors and even the configuration of one tracer and one element
per processor leaded to a good strong scalability.

5. A departure grid algorithm for HOMME

In Section 4 we used a highly accurate algorithm to find the departure
point. There, a benchmark test was applied where the velocity field is known
(analytically) in any point and at any time. This is not met in practice.
Therefore, we introduce in this section a departure algorithm with higher
accuracy than a simple linear determination and apply our approach in Sec-
tion 6 on a baroclinic instability test. It consists of a classical Runge-Kutta
and Taylor expansion ansatz. The method is based on the one presented
in [27], where a Taylor series expansion and an approximation argument of
the total derivative leads also to an economical determination of departure
points with higher accuracy. Using derivative information from the spectral
element method, we can compute a second-order accurate estimation of the
departure point with no additional communication or time-stepping along
backward trajectories. That means, we need only the velocities at one point
but on different time levels. We also refer to the work [28], where the Tay-
lor series method [27] is compared with a Runge Kutta scheme. There, the
velocities at intermediate time levels for forward trajectories are estimated
by linear or cubic interpolation.

Remark 5.1. In this work we focus on semi-Lagrangian schemes for pas-
sive tracer transport. Thus, the dynamics, and in particular the velocities,
are solved by another scheme (here the spectral element method). That
means the velocities u = (u, v), see e.g. (1), are given by a high order
approximation on each element at time t and t+ ∆t.
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In the following xd denotes the departure point which moves to the arrival
point xa during the time [t, t+ ∆t] with the time step ∆t; see Figure 9. For
the coupling to the spectral element grid, where the velocities are given at
xa, we need an economical determination of xd. With a horizontal domain
decomposition, the spectral element containing the point xa and the spec-
tral element containing the point xd may not be on the same processor. In
order to minimize communication between these processors, we look for an
estimate of xd that can be computed using only information given at xa.

The classical predictor corrector scheme, which belongs to the class of
Runge-Kutta schemes, reads for backward trajectory: first we get a predic-
tor for the departure point xd;

x∗d = xa −∆tu(xa, t+ ∆t).

Then the corrector and finally the departure point is given by

xd = xa −∆t
1

2

(
u(x∗d, t) + u(xa, t+ ∆t)

)
.

Note that the velocity u(x∗d, t) may be calculated using velocity data from
the spectral element containing the point x∗d, but as described above we
instead estimate this value using only data at the point xa. By Taylor
series we write

u(x∗d, t) = u(xa, t) + (x∗d − xa)∇u(xa, t)

= u(xa, t)−∆tu(xa, t+ ∆t)∇u(xa, t).

Finally, we can calculate the departure points in terms of the arrival velocity
u(xa, ·)

xd = xa −∆t

(
u(xa, t) + u(xa, t+ ∆t)

2
− ∆t

2
u(xa, t+ ∆t)∇u(xa, t)

)
(8)

Note that approximation (8) is second order accurate in space and time.

6. Comparison: Spectral Elements (SE) Advection Scheme versus
SPELT and CSLAM

In this section we show the first results using SPELT or CSLAM for
the passive tracer transport. HOMME and therefore CAM-SE uses a con-
ventional vector-invariant form of the moist primitive equations. For the
vertical discretization it uses the hybrid η pressure vertical coordinate sys-
tem. For more details we refer to [2]. The model is split into a horizontal
(two dimensional) and a vertical discretization. The vertical discretization
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(a) Initial field. (b) SE at day 13.

(c) SPELT at day 13. (d) CSLAM at day 13.

Figure 10. Figure (a) shows the initial field, the passive tracer, for the baroclinic insta-
bility test in the northern hemisphere, where the instability develops. The test uses the
configuration described in [30]. Figures (b), (c), and (d) show the tracer field after 13
days of advection. The excluded domain does not show any deforming of the initial field.
Thus we highlight only the region of interest.

works in the current configuration on 26 reference levels with a vertically La-
grangian approach [29]. That means the advection schemes used in horizon-
tal directions on the floating Lagrangian levels are occasionally remapped
back (vertical one dimensional) to the reference levels.

In this section we focus on the horizontal discretization. For that the
mass continuity equation reads for the dynamics

∂ρ

∂t
+∇ · (ρu) = 0(9)

with the air density ρ and the velocity u = (u, v). In the following, (9) is
always approximated by the spectral element scheme and is part of the dy-
namics. In particular, the velocity u = (u, v) is known for passive transport.
The passive tracers are described by the conservation equation

∂(ρφ)

∂t
+∇ · (ρφu) = 0,(10)

where φ is the tracer concentration. In the following we use an idealized
baroclinic instability flow benchmark test, which is solved by the dynam-
ics, i.e., the spectral element scheme. A detailed description can be found

89

Unauthenticated
Download Date | 10/4/16 3:04 PM



C. Erath, M. A. Taylor, R. D. Nair

in [30]. The spectral element transport, SPELT, and CSLAM are used to
find a discrete solution for (10), i.e, we use only these schemes for passive
transport. To calculate the departure grid for the semi-Lagrangian schemes
we apply the algorithm described in Section 5. We use a high resolution
of 120 × 120 spectral elements per cube face with 5 × 5 Gaussian points
for the spectral element and 4 × 4 cells per spectral element for SPELT
and CSLAM. This means a very high resolution of 0.1875o at the equator.
We choose the time in such a way that the spectral element scheme has
a CFL= 0.27 and SPELT and CSLAM CFL= 1. Thus all schemes with
their monotone options are stable and run with the maximal CFL, which
is available in HOMME.

We start with the tracer initial field shown in Figure 10(a). The insta-
bility starts to grow in the northern hemisphere. In Figures 10(b),(c), and
(d) we see the field after 13 days for the passive transport with the spectral
element method, SPELT, and CSLAM. We stress that until day 13 the in-
stability happens only between the latitudes 20N and 80N. In other words,
the excluded domain does not show any deforming of the initial field, and
we want to highlight only the region of interest. Note that there is no ana-
lytical solution available for this test. Thus a precise error discussion might
be a difficult task. Note that especially in the instability region, all three
schemes differ a little bit, i.e., the difference field is small. However, we
do not know which scheme convergences best and presents the right wave
behavior. Thus it would be speculating to use one as a reference solution.
Nevertheless, more tests have to be done on this type of coupling which is
beyond the scope of the paper.

Remark 6.1. It is an ongoing research to provide a consistent numeri-
cal coupling between the dynamics (9) and the passive tracer mass trans-
port (10) in the sense of [31]. Consistency means, that if φ = 1 in (10)
then the tracer scheme should match the results produced by the scheme
used for (9). Note that the quantities that should be conserved are ρ and
ρφ, respectively. A possible consistent coupling with the remapping scheme
CSLAM is introduced in [26, Appendix B] if both, (9) and (10), are ap-
proximated by CSLAM. However, in our model we approximate (9) by a
spectral element scheme, which is in particular not a remapping scheme.
Thus we did not succeed to find an efficient solution for the consistent cou-
pling between these two different schemes. For numerical schemes in flux
form consistent couplings are proposed in [31–33] to mention only a few
but not all. Note that the spectral element transport scheme is based on
a Galerkin ansatz and thus contradicts the philosophy of an explicit flux
approximation. However, it has been shown that it is possible to calculate
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(b) Efficiency.

Figure 11. Comparison of computational costs of the spectral element transport scheme,
SPELT, and CSLAM for the horizontal discretizations of the passive tracer transport
equation in the baroclinic instability test on 1024 processors (left). Right: the individual
efficiency of the schemes. The slope indicates the additional costs for adding one tracer
compared to one tracer of the corresponding scheme. E.g., for the spectral element trans-
port we need 1/2 of the time of the first tracer, to add a second tracer. Note that despite
the illustration here, SPELT is more efficient than CSLAM. The figure shows in fact,
how the single scheme performs with respect to the first tracer.

fluxes from the spectral element solution. Thus there is the hope to for-
mulate a consistent coupling between the spectral element dynamics and
flux form semi-Lagrangian schemes such as SPELT [12] and the flux form
version of CSLAM [25] in the sense of [31–33]. However, this is beyond the
scope of this paper.

In Figure 11 we show the performance of the schemes. As a test we use the
baroclinic instability test described above with a resolution of 0.75o degree
at the equator, 15 days and a spectral element CFL≤ 0.27. For SPELT
and CSLAM we allow CFL≤ 1. Additionally, we run the schemes in shape
preserving mode. Thus all three passive tracer transport schemes run sta-
ble with the maximal CFL, which is currently available in HOMME. For
this test we allocate 1024 processors. We consider the overall time for the
horizontal discretizations (26 levels), including the calculation of the depar-
ture grids. In Figure 11(a) we see the computational time of all the three
transport schemes. We observe that the spectral element scheme is very
efficient for less than 10 tracers but becomes very computational expensive
the more tracer we add. For both semi-Lagrangian schemes it is the other
way around. The first tracer is rather expensive because of the pre calcu-
lation of certain quantities. However, both, SPELT and CSLAM, benefit
from their multi-tracer efficiency the more tracers we add, i.e., due to their
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construction, they can reuse quantities for additional tracers as described
in Section 2 and Section 3, respectively. In particular, SPELT is cheaper
for more than 7.7495 tracers than the spectral element scheme and CSLAM
for more than 29.1687 tracers. Note that SPELT is less expensive for one
tracer compared to CSLAM and performs better the more tracer we add.
In Figure 11(b) we plot an efficiency plot. We see the performance for each
individual scheme with respect to the time for one tracer of the correspond-
ing scheme. For example, if we add one tracer, the spectral element scheme
needs half of the computational time of the first tracer, aso. In this figure,
it seems that CSLAM performs slightly better than SPELT. However, this
plot shows only the performance of the individual scheme, i.e., we compare
the scheme with itself.

7. Conclusions

In this work we presented two semi-Lagrangian schemes, SPELT and
CSLAM, which are mass conservative and multi-tracer efficient. In particu-
lar, we discussed several issues on multiple processor platforms and showed
the convergence and strong scalability in HOMME on a standard bench-
mark test and state-of the art supercomputer. We remark that SPELT is
capable of handling arbitrary unstructured quads and has the potential to
be used for variable resolution cubed-sphere grids for regional climate mod-
eling in CAM-SE. This is not obvious for CSLAM. To find the departure
points, which are needed for both schemes, we introduced an economical
algorithm designed for the spectral element grid. Finally, the comparison
to the default spectral element tracer transport scheme in HOMME shows
that both semi-Lagrangian schemes are highly multi-tracer efficient. Two
major ingredients lead to that; semi-Lagrangian schemes allow longer time
steps than explicit schemes on an Eulerian mesh, i.e., currently in HOMME
the difference is CFL≤ 1 to CFL≤ 0.27. Second, SPELT and CSLAM allow
to reuse information, which makes them multi-tracer efficient and reduces
the number of communication per time step. On the other hand, the price
we pay for longer time steps for tracer transport and a low number of com-
munication is the increase of memory per processor. It is an ongoing work to
provide a consistent coupling between the spectral element dynamics and
the semi-Lagrangian schemes for passive tracer transport. However, first
results on the coupling have been shown in this work. There is no inten-
tion to work on a 3D implementation in the near future since the current
dynamical core HOMME for climate modeling uses a dimension splitting
approach and simply does not provide the data structure for a fully 3D
model. In principle, both schemes could be extended to 3D. However, it
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seems to be almost impossible to do it for CSLAM since the search for
overlap regions might be hard to realize in 3D. SPELT, however, relies on
pointwise search and is therefore also suitable for 3D. Due to the simple for-
mulation of the SPELT scheme it might be also appropriate for numerical
weather prediction models.
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