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ABSTRACT

A discontinuous Galerkin (DG) transport scheme is presented that employs the Yin–Yang grid on the

sphere. The Yin–Yang grid is a quasi-uniform overset mesh comprising two notched latitude–longitude

meshes placed at right angles to each other. Surface fluxes of conserved scalars are obtained at the overset

boundaries by interpolation from the interior of the elements on the complimentary grid, using high-order

polynomial interpolation intrinsic to the DG technique. A series of standard tests are applied to evaluate its

performance, revealing it to be robust and its accuracy to be competitive with other global advection schemes

at equivalent resolutions. Under p-type grid refinement, the DG Yin–Yang method exhibits spectral error

convergence for smooth initial conditions and third-order geometric convergence for C1 continuous func-

tions. In comparison with finite-volume implementations of the Yin–Yang mesh, the DG implementation is

less complex, as it does not require a wide halo region of elements for accurate boundary value interpolation.

With respect to DG cubed-sphere implementations, the Yin–Yang grid exhibits similar accuracy and appears

to be a viable alternative suitable for global advective transport. A variant called the Yin–Yang polar (YY-P)

mesh is also examined and is shown to have properties similar to the original Yin–Yang mesh while per-

forming better on tests with strictly zonal flow.

1. Introduction

For decades, spectral-transform methods have been

the preferred choice for global atmospheric modeling.

At moderate resolutions, they are spectrally accurate,

computationally efficient, and simple to implement.

However, the needs of the modeling community are

shifting toward higher resolutions, long time integrations,

and massive parallelization on distributed-memory ma-

chines. None of these trends appear to favor global spec-

tral transforms. Mesh-based methods on the other hand,

such as finite-volume, finite-element, and spectral-element

methods, appear to be excellent candidates for this new

set of requirements.

Mesh-based methods are local, requiring data ex-

change only between neighboring elements, minimizing

communications, and enabling them to scale well on

distributed-memory supercomputers. Furthermore, when

cast in conservative form, some versions are able to

maintain exact mass conservation over long integration

times, which is critical for multidecadal climate simula-

tions. Spectral-element methods, in particular, also re-

tain the high accuracy and exponential error convergence

of the spectral transform. The efficiency and accuracy of

mesh-based methods depend, in general, on the details

of the mesh that is employed. Constructing an optimal

global mesh for atmospheric models is nontrivial, and

there are many ways to do so, as discussed in the recent

review by Staniforth and Thuburn (2012).

Themost popularmesh, by far, is the regular longitude–

latitude (RLL) grid because it is logically rectangular,

orthogonal, and simple to implement. However, it

has long been recognized that the RLL grid is plagued

by a set of issues collectively known as ‘‘the pole

problem.’’ Its meridians converge at the North and

South Poles, creating numerical singular points that

must be dealt with specially. More troublingly, me-

ridian convergence also produces a longitudinal grid

length near the poles that is a small fraction of that at

the equator. This severely restricts explicit time step-

ping schemes due to Courant–Friedrichs–Lewy (CFL)

stability limitations, and the ratio of smallest to largest
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element becomes increasingly unfavorable as global

resolution is increased.

Historically, many grids have been constructed that

cover the globe uniformly while avoiding the pole

problem. Some of the more popular variants include the

cubed-sphere, icosahedral meshes, composite (overset)

meshes, and unstructured meshes. Phillips (1959) con-

structed the first overset mesh, using two polar ste-

reographic projections at high latitudes overlapping a

low-latitude Mercator projection. Sadourny (1972)

subsequently constructed nonoverlapping polyhedral

meshes, including the cubed sphere, hoping to restore

conservation by avoiding overset mesh interpolation.

The cubed sphere was revived and improved upon two

decades later by both Ronchi et al. (1996) and Ran�ci�c

et al. (1996) and has been employed since in spectral-

element solvers by Taylor et al. (1997), Nair et al. (2005),

and Thomas and Loft (2000). Geodesic icosahedral grids

were employed by Sadourny et al. (1968) andWilliamson

(1968) and later applied to finite-element techniques by

Giraldo (1997). A more comprehensive history of mesh

methods in atmospheric modeling may be found in the

review articles by Williamson (2007) and Staniforth and

Thuburn (2012).

More recently, a very promising overset mesh referred

to as the ‘‘Yin–Yang’’ mesh was proposed by Kageyama

and Sato (2004) and a similar mesh was proposed by

Purser (2004). The Yin–Yang mesh comprises two seg-

ments of the RLL mesh placed at right angles to each

other, with a small amount of overlap. Some of the ad-

vantages of the Yin–Yang mesh include

d it avoids the pole problem of the RLL grid, and there

are no singular points
d each grid component is orthogonal, producing a simple

analytical form for partial differential equations
d the grid spacing is quasi-uniformwith a largest–smallest

grid-length ratio of only
ffiffiffi
2

p
, allowing a larger explicit

time step than the RLL grid
d fewer grid points are needed to mesh the sphere

relative to the RLL grid at the same equatorial

resolution
d the block rectangular grids facilitate domain decom-

position methods for elliptic solvers
d as each component is a section of the RLL grid,

existing codes can be adapted for analysis and visual-

ization of results

Although overset methods are not inherently conser-

vative, Peng et al. (2006) showed that exact conservation

can be restored through the application of a local, cell

wise constraint.

Since its inception, a semi-Lagrangian scheme was

developed for the Yin–Yang mesh by Li et al. (2006),

followed by amultimoment finite-volume shallow-water

model by Li et al. (2008). Subsequently, the Yin–Yang

grid was employed in a terrain-following shallow-

atmosphere dynamical core by Baba et al. (2010). The

grid has also been applied recently in weather fore-

casting simulations by Qaddouri and Lee (2011).

Much larger time steps can be achieved with implicit

or semi-implicit time stepping methods. Doing so pro-

duces an elliptical boundary value problem that must be

solved at each time step, which may be accomplished on

overset grids using a domain decomposition technique

introduced by Schwarz (1870). An optimized version of

the Schwarz method was applied to the Yin–Yang grid

by Qaddouri et al. (2008) and Qaddouri (2011) to solve

the shallow-water equations. Quite recently, Zerroukat

and Allen (2012) showed that Krylov solvers may also

be employed to solve elliptic problems on the Yin–Yang

grid with as much efficiency as a single grid.

Although finite-volume implementations of the Yin–

Yang grid have proven to be successful, they require the

construction of a large halo region of grid cells at the

overset boundary to achieve high-order accuracy. In

addition to adding complexity, the halo region limits the

method’s parallel scalability by requiring more inter-

processor communication. Locality can be improved by

reducing the order of accuracy of discretizations at the

overset boundary, but this also reduces the accuracy of

the scheme as a whole as seen by Peng et al. (2006).

As an alternative, we propose the application of a

high-order discontinuous Galerkin (DG) finite-element

solver on the Yin–Yang mesh. As the DG method is

strictly local, and comes equipped with a high-order in-

terpolation scheme, we anticipate that it will be very

well suited to the Yin–Yang grid. While DG overset

methods are reasonably well known in the field of aero-

space engineering as demonstrated by Nastase et al.

(2011), they are much less common in atmospheric sci-

ence andwe are not aware of any prior application of the

DG method to the Yin–Yang mesh.

In the remainder of this paper, a DG implementation

of the Yin–Yang grid on the sphere is presented and

a series of standard benchmarks are applied to analyze

its performance. Section 2 introduces details of the Yin–

Yang grid construction, and section 3 presents the con-

servative transport equations on the sphere. Section 4

discusses the nodal discontinuousGalerkinmethod used

for spatial discretization as well as an explicit Runge–

Kutta discretization in time. Section 5 presents some

details of the overset boundary implementation. In

section 6, a series of numerical benchmarks and error

convergence studies are applied to examine the perfor-

mance of the scheme. Finally, conclusions are drawn in

section 7.
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2. The YY meshes

a. The YY mesh

The Yin–Yang (YY) mesh of Kageyama and Sato

(2004) consists of two identical RLL segments that lie at

right angles to each other and overlap at their edges as

illustrated in the top half of Fig. 1. Denoting the Yin

region by Y and the Yang region by Y9, their union

seamlessly covers the sphere such that S 5 Y < Y9. The
longitudinal orientation of the grids is arbitrary, and we

have chosen to center the Yin grid at the primemeridian

for symmetry.

The Yin grid consists of a rectangular region Y with

longitude–latitude coordinates l 5 (l, u). The longi-

tudinal section spans three-quarters of the globe with

l2 [23p/42 d, 3p/41 d], where d is theminimum grid-

overlap parameter, illustrated in Fig. 2, which may be

small but must be nonzero. The latitudinal section con-

sists of the low-latitude region u 2 [2p/4 2 d, p/4 1 d],

where the grid is nearly uniform. Using the absolute 3D

Cartesian coordinates x 5 (x, y, z) for reference, the

polar axis of the Yin grid is aligned with the z axis, l 5
0 is aligned with the x axis, and l 5 p/2 is aligned with

the y axis.

The Yang region Y9 is identical to the Yin region, but

in a rotated coordinate system l9 5 (l9, u9). The polar

axis lies along the 2x Cartesian axis, l9 5 0 is aligned

with the y axis, and l9 5 p/2 is aligned with the z axis. If

a rotated Cartesian coordinate system x9 5 (x9, y9, z9) is
associated with the Yang grid, the Yin and Yang axes

are related by (x9, y9, z9) 5 (2x, z, y).

Because of the overlapping elements at the corners,

the surface area of the Yin–Yang mesh exceeds that of

the sphere by 6.2%, when the minimum overlap is d5 0.

b. The YY-P mesh

Amodified version of the Yin–Yang grid was recently

discussed in the review paper by Staniforth and Thuburn

(2012), where the Yin grid is extended to cover the en-

tire equatorial region and the Yang grid is split to form

two polar caps as shown in the bottom half of Fig. 1. This

variant, which we refer to as the Yin–Yang polar (YY-P)

mesh, would appear to be more advantageous for purely

zonal flows, as little to no interpolation is necessary in

such a case.

The YY-P mesh is defined such that YE is the equa-

torial region l 2 [2p, p] 5 [2p/4 2 d, p/4 1 d] of the

RLL coordinates system. The Y9N region is the North

FIG. 1. TheYY andYY-Pmeshes. (top) TheYYmesh comprises theYin regionY in blue and theYang regionY9 in red. (bottom) In the

YY-P mesh, the Yin region YE is extended to the entire equatorial region, and the Yang region is split into a North Polar cap Y9N and

a South Polar cap Y9S.
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Polar section l9 2 [p/4 2 d, 3p/4 1 d] 5 [2p/4 2 d,

p/4 1 d] of the Yang coordinate system, and the

Y9S region is the South Polar section l9 2 [2p/4 1 d,

23p/42 d]5 [2p/42 d,p/41 d] of theYang coordinate

system. As before, the union of all three regions seam-

lessly covers the sphere such that S 5 YE < Y9N < Y9S.

3. Conservative transport on the sphere

Consider the transport equation in flux form for

a conserved scalar field c on the sphere S,

›c

›t
1$ � F5 0 in S3 (0,T] , (1)

where F 5 cy is the mass flux and y is the advecting

velocity field. The divergence of F, written in RLL (Yin)

coordinates (l, u), is

$ � F5
1ffiffiffi
g

p
�
›

›l
(

ffiffiffi
g

p
Fl)1

›

›u
(

ffiffiffi
g

p
Fu)

�
, (2)

where g 5 r cos2u is the determinant of the covariant

metric from (A9), Fl 5c _l5cu/(r cosu) is the longitu-

dinal flux, and Fu 5c _u5cy/r is the latitudinal flux.

Upon substitution, the transport equation is

›c

›t
1

1

r cosu

�
›

›l
(uc)1

›

›u
(y cosuc)

�
5 0, (3)

where u5 (r cosu) _l is the zonal wind speed and y5 r _u is

the meridional wind speed.

The transport equation in Yang coordinates takes

the same form in the rotated coordinate system l9, but
the wind speeds u95 r cosu9 _l9 and y95 r _u9 are neither

strictly zonal nor strictly meridional. However, the

zonal and meridional components of u9 5 (u9, y9) may

be obtained by applying the transformation matrix M:

�
u

y

�
5M

�
u9

y9

�
, (4)

where

M5

�
2sinl sinl9 2cosl9/cosu

cosl9/cosu 2sinl sinl9

�
. (5)

4. DG method

The discontinuousGalerkinmethodmay be viewed as

a hybrid technique combining many of the best charac-

teristics of spectral, finite-element, and finite-volume

methods. The DG spatial discretization combined with

Runge–Kutta time integration provides a class of robust

algorithms known as the RKDG method for conserva-

tion laws as described by Cockburn and Shu (1989). For

an excellent introduction to both discontinuous and

continuous Galerkin spectral-element methods, please

see Kopriva (2009) as well as Karniadakis and Sherwin

(2005).

Both nodal and modal variants of the DGmethod are

popular in the atmospheric sciences, as demonstrated by

Giraldo et al. (2002), Nair et al. (2005), and Blaise and

St-Cyr (2012). A comprehensive review of DGmethods

in atmospheric modeling may be found in Nair et al.

(2011). In this work, a twice integrated nodal method is

chosen, as discussed by Kopriva and Gassner (2010),

with nodes placed at theGauss–Lobotto–Legendre (GLL)

quadrature points to simplify the implementation of the

overset boundary.

a. Nodal DG formulation

Beginning with the transport equation,

›c

›t
1$ � F5 0 in Y or Y9 , (6)

the nodal DG formulation proceeds by partitioning the

domain into a set of nonoverlapping elements Ve such

that Y5<
Ny

e50Ve, where NY 5 Ne 3 3Ne is the number

of elements in the region and Ne is the number of ele-

ments spanning the short edge of the Yin or Yang

mesh. Each element subtends a square angular region

FIG. 2. Close-up view of the YY overset boundary where thin

lines denote elements, thick lines denote the overset boundaries,

and dots indicate the nodal GLL quadrature points. The factor d

controls the minimum overlap (shown here is the value d5 2.58). A
default overlap of d 5 0.18 is used unless otherwise specified.
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Dl5 Du5 p/2Ne containing Ng 3Ng nodal grid points

for a total of N5 6N2
eN

2
g degrees of freedom for the

entire mesh.

On a given elementVe, the approximate solution ce is

assumed to exist in the vector spaceVe of polynomials of

up to degree P 5 Ng 2 1 defined by

Ve 5 fu 2 L2(Y): ujV
e
2 PP(Ve), " Ve 2 Yg , (7)

where

PP 5 spanflmfn: 0#m, n#Pg . (8)

The transport equation is then multiplied by a smooth

test function ue chosen from the same polynomial space

Ve and integrated over the element Ve to obtain the

weak (integral) Galerkin form as described in Cockburn

and Shu (2001). The divergence theorem is then applied

to generate a surface term

ð
V

e

�
ue

›ce

›t
2F � $ue

�
dV1

ð
G
e

F̂ � n̂ue dG5 0, (9)

where F̂ is the flux boundary value called the ‘‘numerical

flux,’’ n̂ is the outward-facing normal vector on the ele-

ment boundary Ge, and the terms dV and dG are differ-

ential units of area and length. The divergence theorem

is applied a second time to recover the divergence form

of the volume term

ð
V

e

ue

�
›ce

›t
1$ � F

�
dV1

ð
G
e

(F̂2F) � n̂ue dG5 0. (10)

All integrals are approximated using Gaussian numeri-

cal quadrature over the GLL quadrature points. To

apply Gaussian quadrature, the element must first be

mapped onto a square reference element with coordinates

j 5 (j, h), where j 2 (21, 1) and h 2 (21, 1). In refer-

ence coordinates, the divergence of F is

$ � F5
1ffiffiffi
g

p
r

�
›

›j
(

ffiffiffi
g

p
rF

j)1
›

›h
(

ffiffiffi
g

p
rF

h)

�
, (11)

where gr is the determinant of the composite trans-

formation from reference to Cartesian coordinates as

derived in (A38). Transforming the velocity into refer-

ence coordinates gives the reference fluxes and refer-

ence Jacobian

Fj 5ce
_j5 (2/Dl)(ceu/r cosu) , (12)

Fh 5ce _h5 (2/Du)(cey/r), and (13)

ffiffiffi
g

p
r 5

DlDu

4
(r2 cosu) . (14)

Spatial discretization is performed by approximating

each function as a sum of polynomial basis functions

‘(j), which are high-order Lagrange interpolating

polynomials:

‘i(j)5P
P

j6¼i
j50

j2 jj

ji 2 jj
. (15)

A Lagrange polynomial ‘i(j) takes the value ‘i(ji)5 1 at

node i, ‘i(jj)5 0 at node j 6¼ i, and interpolates smoothly

between nodes. The interpolation root nodes fjigP0 and

fhjgP0 are chosen to coincide with the Ng GLL quadra-

ture points to facilitate numerical integration. Two-

dimensional basis functions are constructed from a

tensor product of the one-dimensional bases, such that

c is approximated by

ce(j,h)5 �
P

i50
�
P

j50

ce(ji,hj)‘i(j)‘j(h) . (16)

Substituting the discretized scalar field and test func-

tions into (10) and replacing integrals by Gaussian

quadrature converts the partial differential equation

into a set of ordinary differential equations (ODE) in

time.

b. Time discretization

After spatial discretization, a set of ordinary differ-

ential equations remain that may be written abstractly as

d

dt
U5L(U) , (17)

where L is a linear operator acting on the set of dis-

cretized unknown coefficients U. For the transport

equation, the set of unknowns U corresponds to the set

of discrete nodal values of c.

Third- and fourth-order Runge–Kutta schemes are

popular in the DG literature for the solution of this type

of ODE. However, in cases where the fields are smooth

and well resolved and the polynomial order is high

(Ng . 4), the numerical error is entirely dominated by

the low-order time stepping scheme, requiring an ex-

ceedingly small time step to achieve full accuracy.

Therefore, we prefer the strong stability-preserving

Runge–Kutta (SSP-RK) method of Gottlieb et al. (2001),

which produces time stepping schemes of arbitrarily

high-orderm, while keeping the CFL number at or near

1. The scheme is described as follows:
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U(0) 5Un

U(i) 5U(i21) 1DtLU(i21) for i5 1, . . . ,m2 1

Un115 �
m21

k50

am,kU
(k) 1Dtam,m21LU

(m21) , (18)

where the coefficients a are given by a1,0 5 1 and the

recursive relationship

am,k 5
1

k
am21,k21 for k5 1, . . . , m2 1

am,m215
1

m!
am,05 12 �

m21

k51

am,k . (19)

By matching the order m to the order of the approxi-

mating polynomials such thatm5 Ng 2 1, full accuracy

is achieved with the largest possible time step. The time

step is computed using the estimate

Dt5C
Dx

y(2m1 1)
, (20)

where C is the CFL number, Dx is the element width,

and y is the maximum velocity. For this set of Runge–

Kutta schemes, the maximum stable time step corre-

sponds to a CFL number C 5 1. While a more accurate

estimate of the CFL number is available from Gassner

and Kopriva (2011), the use of the above estimate is

retained for simplicity, as it ensures that the simulation is

stable up to a CFL number of 1.

c. Riemann solver

After a single time step, the advected field depends

upon field values c(ji, hj) interior to the element but not

on values from the exterior. Thus, the solution is local to

each element and its value may change discontinuously

at element boundaries. The piecewise continuous solu-

tions are then coupled together by the exchange of mass

via the mass flux F across element interfaces.

The mass flux F at the interface is not uniquely de-

termined, and the correct numerical flux F̂ must be de-

termined by solving a Riemann problem (familiar from

finite-volume schemes) as discussed in Toro (2009). For

advective transport, if mass is flowing out of the element,

the interior value F2 5 c2y should be used, and if mass

is flowing into the element, the exterior value F1 5 c1y

should be used, leading to the upwind flux formula

F̂ � n̂5c2yn1 jynj
2

1c1yn 2 jynj
2

, (21)

where yn 5y � n̂ is the velocity component in the out-

ward normal direction. Regrouping terms, this may be

written as

F̂(F2,F1)5
1

2
(F2 1F1) � n̂1 jy � n̂j

2
(c2 2c1) , (22)

which is called the Rusanov flux or sometimes the local

Lax–Freidrichs flux.

5. Overset boundary implementation

The edges of the Yin and Yang grids are overset

boundaries and as such their values must be interpolated

from the interior of the complimentary grid. A given

node point lk 5 (lk, uk) on the Yin overset boundary

corresponds to a nonnodal location within the Yang

grid. Its position is found in Yang coordinates by ap-

plying the coordinate transformation (as derived in the

appendix)

u9k5 arcsin(sinlk cosuk) , (23)

l9k 5 arctan(2tanuk/coslk) . (24)

The element V9e containing the point is determined by

a simple boundary intersection test. The Yang coordi-

nates are thenmapped into the reference element by the

Yang to reference coordinate transformation

j9k 5 2(l9k 2 l9e)/Dl9e , (25)

h9k5 2(u9k 2 u9e)/Du9e , (26)

where (l9e, u9e) is the element center and (Dl9e,Du9e) is its
extent. The element V9e and reference point j9k associ-

ated with overset node lk need be computed only once

at the beginning of the simulation and are cached for

later use. The same process is repeated to locate the

Yang overset nodes within the Yin grid.

At each time step of the simulation, values of the scalar

field c are interpolated from the interior of the Yang

grid at the overset points flkg by employing the high-

order Lagrange interpolation scheme inherent to the

nodal DG method:

ce(j9k,h9k)5 �
P

i50
�
P

j50

ce(j9i ,h9j )‘i(j9k)‘j(h9k) . (27)

The value of a scalar field is independent of the co-

ordinate system used, so ce(jk,hk)5ce(j9k,h9k).
Each component (u, y) of the velocity field is in-

terpolated individually from the Yang grid. Then the

velocity components are transformed into the destina-

tion coordinate system using the Yang–Yin transfor-

mation matrix M from (5).

The surface flux F at the overset interface is com-

puted from the interpolated scalar field values and the
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transformed velocity field components and stored in

a ‘‘ghost surface’’ representing the missing neighbor

element. The usual Riemann solver may then be applied

to compute the numerical flux.

6. Numerical experiments

A series of numerical experiments is performed to

evaluate the effectiveness of the DGYin–Yang scheme,

including both rotational and deformational tests. Rev-

olution of a Gaussian scalar field about the globe by

a ‘‘solid-body’’ wind field is examined to assess the

scheme’s performance and error convergence properties

on fully resolved, smooth initial conditions, as suggested

by Levy et al. (2007). Solid-body revolution of a cosine

bell is also tested, as suggested by Williamson et al.

(1992), to facilitate comparison with other global ad-

vection schemes. Last, the challenging moving-vortex

test of Nair and Jablonowski (2008) is applied to mea-

sure the scheme’s performance on a more realistic case.

For each numerical experiment, initial conditions are

applied to the Yin and Yang grids independently using

analytic values computed at their respective node points.

a. Solid-body rotation of a Gaussian

The first numerical experiment examines the scheme’s

ability to advect a smooth nonzero scalar field uniformly

around the globe. The initial condition is the Gaussian

scalar field

c(r, 0)5 exp[2(r2 r0)
2/2a2] , (28)

where r is a point in Cartesian space, the center of the

Gaussian is located at r0 5 (r, 0, 0), and its half-width is

a 5 r/6. The wind velocity field is given by

y5 r3v , (29)

which is purely rotational with constant angular velocity

v5Av̂ of amplitudeA5 (2.0p/12 days). The tilt of the

rotational axis is set by the parameter a such that

v̂5 (0, 2sina, cosa). The angle a5 0 corresponds to an

equatorial flow from west to east while a 5 p/2 corre-

sponds to a flow from north to south along the prime

meridian, as described in Williamson et al. (1992).

1) NUMERICAL RESULTS

Transport of the Gaussian about the globe is consid-

ered for three different orientations, a 5 08, 458, and
908, on the YY mesh. The number of elements along

the latitudinal section is fixed at Ne 5 5, and the

number of grid points per element edge is fixed at Ng 5
10, producing a moderately sized simulation with 15 000

degrees of freedom. In each case, the numerical solution

is compared to the analytical solution, the normalized

error measures L1, L2, and L‘ are computed, and the

results are plotted in Fig. 3. The normalized error

measures are defined to be

L15

ð
jc2caj dV

.ð
jcaj dV , (30)

L25

ð
jc2caj2 dV

� �1/2 ð
jcaj2 dV

� �1/2
, and

,
(31)

L‘5max(jc2caj)/max(/jcaj) , (32)

where the integrals and maxima are taken over the en-

tire mesh. In practice, the integrals are assessed using

Gaussian numerical quadrature evaluated at the node

points. As the polynomial order is P 5 Ng 2 1 5 9,

a ninth-order Runge–Kutta time stepping scheme is

employedwith CFL5 0.5. This CFL number was chosen

to ensure the time-discretization error is small in com-

parison with the spatial-discretization error.

It can be seen in Fig. 3 that the errors are quite small

(on the order of 1026) and relatively level, indicating

that time-discretization error is not a significant factor.

For equatorial a5 08 and polar a5 908 revolutions, the
Gaussian curve crosses the Yin and Yang overset grids

nearly simultaneously, while in the a5 458 case, the Yin

and Yang boundaries are spaced farther apart.

In the a 5 0 case, the center of the Gaussian crosses

the Yin andYang boundaries at t5 4.5 days and again at

t 5 7.5 days. Looking closely at the error norms in each

case, we see that no significant error increase is ob-

servable at these times, indicating that the Gaussian is

being passed smoothly between the two grids.

To compare the performance of the two Yin–Yang

meshes, the above experiments were repeated on the

YY-P mesh andL‘ error norms for both sets are plotted

in Fig. 4. Small differences do exist, with the YY-P mesh

performing slightly better on the equatorial case a 5
08 and the YY mesh performing slightly better on the

polar case a 5 908. But the error norms differ by no

more than a factor of 2, indicating that the choice of YY

mesh versus YY-Pmesh is fairly insignificant for smooth,

well-resolved functions.

2) CONVERGENCE STUDIES

Both h-type and p-type grid-refinement studies were

performed on the Gaussian advection test on the YY

mesh, at resolutions ranging from roughly N 5 2000 to

N 5 100 000 degrees of freedom, where N5 6N2
eN

2
g .

The h-refinement studies examine convergence of the

numerical solution to the analytical solution by increasing
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the number of elements per edge Ne while keeping

the number of nodes per element Ng fixed, and the

p-refinement studies examine the convergence by keeping

the number of elements Ne fixed while increasing the

polynomial order Ng of each element. Errors in each

case were sampled at t 5 12 days, corresponding to a

single revolution about the globe.

The second-order h-refinement study (Ng5 3) exhibited

the expected third-order convergence (23.42), achieving

a minimum error of L2 5 1.1 3 1023 at 43 elements per

edge (Ne 5 43) corresponding to 99 846 degrees of free-

dom. The fourth-order h-refinement study (Ng 5 5) ex-

hibited fifth-order convergence (25.21) with a minimum

error ofL25 3.93 1026 at 26 elements per edge (Ne5 26)

corresponding to 101 400 degrees of freedom.

A p-refinement study with 10 elements per edge (Ne 5
10) exhibited spectral (exponential) convergence, achieving

aminimum error ofL25 1.13 10212 using twelfth-order

polynomials (Ng 5 13) corresponding to 101 400 de-

grees of freedom. A p-refinement study with 3 elements

per edge (Ne 5 3) also exhibited spectral convergence,

achieving a minimum error of L2 5 3.0 3 10213 using

twenty-second-order polynomials (Ng 5 23) corre-

sponding to only 28 566 degrees of freedom. Using

polynomials above the twenty-second order produced

no additional error reduction for this mesh.

Figure 5 displays the L2 errors for all four conver-

gence studies with solid lines denoting h conver-

gence and dashed lines denoting p convergence. For

a smooth initial condition, like the Gaussian, it is

clear that increasing the polynomial orderNg is strongly

preferred over increasing the number of elements Ne,

as the error is nearly 12 orders of magnitude smaller

for the highest-order polynomials compared to the

FIG. 3. Normalized error measures for Gaussian advection on the YY grid with 6N2
eN

2
g 5 63 52 3 102 5 15 000 degrees of freedom. The

Gaussian crosses the overset boundaries smoothly in each case. (top) West–east revolution, a 5 08, (middle) southwest–northeast rev-

olution, a 5 458, and (bottom) south–north revolution, a 5 908.
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lowest-order polynomials for identical degrees of

freedom.

3) MASS CONSERVATION

Although the transport equation is written in con-

servative form, the overset technique is not strictly mass

conserving without additional constraints. On a con-

formingmesh, such as an unstructured grid, or the cubed

sphere, the numerical flux leaving one element is iden-

tical to the numerical flux entering its neighbor element,

resulting in mass conservation within the limits of nu-

merical round-off error.

For an overset mesh boundary, this is not the case.

The mass flux entering the surface of a Yang element

and the flux exiting from aYin element, for example, are

spatially separated by the overlap distance d at a mini-

mum and by d 1 108 at the mesh corners. As the mass

passes between the two surfaces, it incurs errors due to

advection and, to a lesser extent, errors due to numerical

interpolation. Therefore, the mass leaving Yin does not

strictly match the mass entering Yang.

However, the error incurred is quite small, typically

a couple of orders of magnitude smaller than theL2 norm

for the scheme as a whole. As an example, Fig. 6 shows

the numerical mass error for the west–east Gaussian ad-

vection case on the YYmesh examined earlier withNe5
5,Ng 5 10, givingN5 15 000 degrees of freedom. While

the maximum L2 error for the simulation is on the order

of 1026, the mass error is on the order of 1028.

Peng et al. (2006) demonstrated that mass conservation

can be restored for an overset finite-volume mesh by ap-

plying a constraint locally within each cut-cell (volume in-

tersecting the overset boundary). In principle, it should be

possible to construct a similar elementwise constraint for

the DG overset boundary as well. While such a constraint

may not be necessary for weather prediction applications,

it is essential for long-duration climate simulations.

b. Solid-body rotation of a cosine bell

The cosine bell test is widely employed to compare the

performances of global advection schemes. The initial

mass field is

FIG. 4. Comparison ofL‘ norms on the YYmesh (thin line) vs the YY-Pmesh (thick line) at

axis angles of (from top to bottom) 08, 458, and 908. Differences between the two are not large

for smooth, well-resolved functions.
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c0 5

8>><
>>:

1

2

�
11 cos

�
p

d

d0

��
for d, d0

0 otherwise

, (33)

where d 5 r[arccos(r � r0/r2)] is the great circle dis-

tance between a point on the sphere r and the cosine

bell center at r0 and d05R/3 is the radius of the cosine

bell.

As before, the mass field is advected by the velocity

field y5 r3v, which is rotational with angular velocity

v(a)5 (2:0p/12 days)(2sinaêx 1 cosaêz), where a is

the axis tilt angle. In contrast with the infinitely differ-

entiable (C‘) Gaussian considered in the previous test,

the cosine bell is discontinuous in its second derivative

and all higher derivatives (C1 continuous), which is

known to limit the convergence rate under uniform grid

refinement.

To facilitate comparison with other schemes, simula-

tions were performed at a resolution ofNe5 4 andNg5
8 representing 6144 degrees of freedom. This is equiv-

alent to the (32 3 96 3 2) finite-volume grid used in

finite-volume Yin–Yang studies such as Li et al. (2008).

Rotational angles of a 5 08 and 458 were analyzed on

both the YY and YY-P grids, and the CFL number was

fixed at 0.5.

1) NUMERICAL RESULTS

Normalized errors for both the west–east (a5 08) and
southwest–northeast (a 5 458) trajectories on the YY

mesh are plotted in Figs. 7c,d, demonstrating that the

scheme succeeds in transporting the cosine bell scalar

field about the globe with little distortion. After one

revolution, the numerical solution closely matches the

exact solution, and has maximum errors norms of L1 5
0.030, L2 5 0.014, and L‘ 5 0.012. Comparison with

other global advection schemes shows this method to be

very competitive, producing smaller error norms for

a fixed number of degrees of freedom. For a detailed

comparison, please refer to Table 4 in Li et al. (2008).

The same tests were applied to the YY-P grid as il-

lustrated by Figs. 7e,f. The a 5 0 case shows improved

performance on this mesh, as anticipated. The cosine

bell completes the circuit without crossing any overset

boundaries and as a result the signal is somewhat

smoother, although the overall order of magnitude is

unchanged. For this case, the maximum error norms are

L1 5 0.021, L2 5 0.013, and L‘ 5 0.012, which repre-

sents a small improvement over the YY grid measure-

ments. The a5 458 test on the YY-P mesh, on the other

hand, produces error norms that are nearly indistin-

guishable from those of the YY mesh, indicating that

neither mesh has a distinct advantage over the other if

the transport is not predominantly zonal or polar.

The numerical solution and numerical error field

(difference from the analytical solution) are plotted in

Figs. 7a,b for a 5 458 on the YY grid. Error contours

range from 20.025 to 0.025 in 0.018 75 increments

where solid lines represent positive values and dashed

contours represent negative values. We observe that

although small, the contours are somewhat oscillatory,

which is characteristic of high-order spectral methods.

No filters or slope limiters were applied.

FIG. 5. Numerical error convergence of Gaussian solid-body

revolution on the YY grid, under h-type and p-type refinement.

The two h-type refinement studies exhibit geometric convergence

rates of 23.42 for Ng 5 3 and 25.21 for Ng 5 5. The two p-type

refinement studies both exhibit spectral convergence, with the

Ne 5 10 study achieving its minimum error at 101 400 degrees of

freedom and the Ne 5 3 study achieving its minimum error at only

Ne 5 28 566 degrees of freedom.

FIG. 6. Normalized mass error for Gaussian revolution for Ne 5
5, Ng 5 10, a 5 45. Mass is not strictly conserved without an ad-

ditional constraint, but the errors are small, with a maximum error

roughly two orders of magnitude smaller than the L2 norm.
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2) CONVERGENCE STUDIES

For the case in question, with 32 points per mesh edge,

there is considerable flexibility in how the degrees of

freedom are divided between Ne and Ng. The choices

range from 32 elements with 1 grid point to a single el-

ement with 32 grid points. The Gaussian test suggests

that high-order elements are preferable over a high

element count. That conclusion remains valid for the

cosine bell case as well, but to a lesser extent. For

polynomial orders ofNg5 f2, 4, 8, 16, 32g, simulations

produce errors of L2 5 f0.87, 0.062, 0.014, 0.010,

0.0087g. However, the extra computational time re-

quired for the highest-order Ng 5 32 case does not

FIG. 7. Cosine bell transport results with Ne 5 4 elements and Ng 5 8 nodes per element (6144 degrees of freedom). (a) Numerical

results after one revolution for the southwest–northeast, a5 458 case on the YYmesh show no visible distortion. Contours range from 0.1

to 0.9 at intervals of 0.1. (b) Difference from analytic solution with error contours from20.025 to 0.025 by 0.018 75. Dashed contours are

negative. Error norms for (c) west–east revolution on the YY mesh, (d) southwest–northeast revolution on the YY mesh, (e) west–east

revolution on the YY-P mesh, and (f) southwest–northeast revolution on the YY-P mesh.
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justify the modest error reduction, and the Ng 5 16 or

Ng 5 8 options are preferable in practice (for a C1

continuous function). In general, the best choice of

polynomial order will depend upon the problem being

solved and the amount of time available.

To quantify the error convergence in greater detail,

h-refinement studies were performed on the YY mesh

at fixed polynomial orders of Ng 5 3 and Ng 5 5. A

p-refinement studywas also performedwith a fixed element

count of Ne 5 3. The L2 errors are plotted on a log–log

scale in Fig. 8, and linear regression reveals that theNg5
3 h-refinement exhibits a slope of 22.3 while the Ng 5
5 h-refinement produces a slope of22.5. In contrast with

theGaussian advection test, the p-refinement study does

not exhibit spectral convergence. Instead it exhibits

geometric convergence with a measured slope of23.2.

From this, one might conclude that low-order poly-

nomials are just as good as high-order polynomials, as

convergence is geometric for both. However, the error

plots in Fig. 8 reveal that higher-order elements are still

the better choice (within the limits of computational

time), as they produce results with an absolute error that

is several orders of magnitude smaller than that pro-

duced by the lower-order elements.

c. Moving-vortices test

The third test is the challenging moving-vortex test

proposed by Nair and Jablonowski (2008), intended to

address a more realistic atmospheric flow. In this test,

a hyperbolic initial condition, dividing the globe into two

regions, is subjected to a vortical velocity field repre-

senting an idealized cyclogenesis flow. The cyclonic ve-

locity field is then superimposed upon the solid-body

velocity field described earlier, resulting in a pair of

vortices that revolve about the globe as they rotate.

The test represents the roll-up of an idealized moving

atmospheric vortex such as a hurricane or tropical cy-

clone. As with the previous tests, its exact solution is

known at all times, making it popular for error assess-

ment and convergence studies on arbitrary structured

and unstructured grids as demonstrated by Flyer and

Lehto (2010) and Ii and Xiao (2010).

The dual vortices are located at the two opposing

poles of the axis êz
+(t) in a rotated coordinate system

l+ 5 (l+, u+), and arise from the velocity field

y+ 5 y0
3

ffiffiffiffiffiffiffi
(3)

p
2

tanh(r) sech2(r) , (34)

which is a function of the distance parameter r+ 5 (r/a0)

cosu+. The parameter a0 sets the characteristic size of the

cyclone and y0 sets its rotational speed. The velocity field

is directed longitudinally in the rotated coordinate sys-

tem, along the vector êl
+ 5 êz

+ 3 r̂. The associated angular

velocity is defined to be

v+(u+)5

�
y+/r+ if r+ 6¼ 0

0 if r+ 5 0
, (35)

where r+ 5 rcosu+ is the distance to the ez
+ axis. The

analytical solution in rotated coordinates is

c(l+, u+, t)5 12 tanh

�
r

g
sin(l+ 2v+t)

�
, (36)

where g sets the transition width, defining the sharpness

of the interface between the two regions at t 5 0. The

total velocity field is found by summing the cyclonic field

with the solid-body rotation field,

y5y+ 1 (v3 r) , (37)

where the orbital angular speed is v5 2p/(12 days). The

following numerical experiments employ a cyclone of

diameter a0 5 R/3, a velocity scale factor y0 5 1/6, and

a transition width g 5 5R, where R is the radius of the

earth.

A resolution of Ne 5 5 elements per mesh edge and

Ng 5 8 grid points per element is chosen to match the

resolution of the experiments in Nair and Jablonowski

(2008). This setup has 9600 degrees of freedom, giving

FIG. 8. Error convergence of the cosine bell test on the YY grid

under h-type and p-type mesh refinement. The h-type refinement

studies shows geometric convergence with orders of22.3 forNe 5
3 elements per edge and 22.5 for Ne 5 5. The p-type refinement

study also produces geometric convergence due to C1 continuity of

the cosine bell with a convergence order of 23.2.
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an average resolution of 2.68 3 2.68 per node. With the

CFL number fixed at 0.5, each simulation took just over

1300 steps to complete (using the eighth-order Runge–

Kutta scheme), which corresponds to roughly 800 s per

step.

Figure 9 shows the evolution of the numerical solution

for the a5 0 west–east case on the YY grid as a series of

orthographic projections centered on one of the vorti-

ces. The numerical results, plotted at t5 0, 3, 6, 9, and 12

days, are visually indistinguishable from the analytic

solution. The last frame in the figure plots the numerical

error with contours from 0.5 to 1.5 by 0.11, exhibiting

errors that are aligned primarily in the orbital direction.

The numerical solution is compared to the analytical

solution and the time-dependent error measures L1,

L2, and L‘ are plotted in Figs. 10a,b for a5 08 and a5
458 orbits. The error norms for the a 5 08 case look

remarkably similar to those produced by the cubed-

sphere DG scheme in Nair and Jablonowski (2008),

with maximum error values of L1 5 1.9 3 1023, L2 5
5.8 3 1023, and L‘5 5.2 3 1022. However, in contrast

with the cubed-sphere DG scheme, the Yin–Yang DG

scheme performs equally well at 458 with maximum

normalized errors of L1 5 1.83 1023, L25 5.63 1023,

and L‘ 5 5.7 3 1022.

Examining the a 5 458 case in greater detail, Fig. 11

displays contour plots of the numerical results at 3, 6, 9,

and 12 days. It is clear from the figure that the vortices

are well resolved at each time (analytic solutions are not

plotted, as they are visually indistinguishable from the

numerical results). There is no noticeable signal due to

the presence of the Yin and Yang overset boundaries.

Both tests were repeated on the YY-P mesh, the re-

sults of which are plotted in Figs. 10c,d. In each case, the

scalar fields were visually indistinguishable from the YY

results and the error norms were very similar as well.

Thea5 08 case producedmaximum error norms ofL15
1.93 1023,L25 5.83 1023, andL‘ 5 4.73 1022, which

is a bit better than the corresponding YY case, while the

a 5 458 case produced error norms of L1 5 1.8 3 1023,

L2 5 5.8 3 1023, and L‘ 5 6.4 3 1022, which is mar-

ginally noisier than the correspondingYY case. In contrast

with the a 5 0 cosine bell test, the moving-vortex test did

not benefit significantly from the improved YE equatorial

FIG. 9. (top) Numerical solution for the west–east a 5 0 moving-vortices test at a resolution of Ne 5 5, Ng 5 8 (average of 2.258 per
degree of freedom) on the YYmesh. Contours are sampled at (top) (from left to right) 0, 3, 6, and 9 days. (bottom) (from left to right) The

final numerical solution at 12 days closely matches the analytical solution with the difference field shown to the right. Contours range from

20.05 to 0.05 with an interval of 0.0111.
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Yin grid, as the cyclonic field is global in extent and the

wind fields are not strictly zonal.

7. Conclusions

We have presented an implementation of the Yin–

Yang overset grid in a nodal discontinuous Galerkin

(DG) setting. In comparison with finite-volume and

finite-difference implementations of the Yin–Yang grid,

the discontinuous Galerkin approach is considerably

simpler, as the overset interpolation is local, requiring

information from the interior of a single element and

avoiding the complex halo-cell construction needed for

high-order interpolation in those schemes. The DG

implementation benefits from the interpolation scheme

provided by its polynomial representation, which is of

high order and accurate.

The method was subjected to a series of standard

benchmarks used to compare global transport schemes

including solid-body rotation of a smoothGaussian field,

solid-body rotation of a (C1 continuous) cosine bell

curve, and the challenging moving-vortex test repre-

senting an idealized cyclone. In each case, the scheme

performed very well, producing results of equivalent or

greater accuracy when compared with other global ad-

vection schemes. For smooth initial conditions, themethod

exhibited spectral convergence under p-type mesh re-

finement, reaching an error norm of L2 5 33 10213 using

fewer than 29 000 degrees of freedom.When coupled with

an appropriately high-order explicit Runge–Kutta scheme,

CFL numbers as large as 1 may be employed and the

scheme is quite fast even for high-accuracy simulations.

In comparison with the DG cubed sphere, the Yin–

Yang overset method has the advantage that it com-

prises fewer regions,minimizing the number of boundary

crossings, and in some cases (particularly at 458) the
Yin–Yang method showed smaller error norms. The

coordinate systems are orthogonal in both component

meshes, resulting in a simpler representation of some

equations, whereas the cubed-sphere coordinate systems

are nonorthogonal. Also, postprocessing is simplified

by the familiar RLL structure of the mesh components.

FIG. 10. Error norms for themoving-vortices test. The error norms for (a) west–east flow a5 0 on theYYmesh are

very similar to those for (b) southwest–northeast flow a5 45 in contrast with DG on the cubed sphere (which shows

increased error at 458). (c) West–east flow on the YY-P mesh. (d) Southwest–northeast flow on the YY-P mesh.
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Overall, the implementation complexity of theDGYin–

Yang and DG cubed-sphere methods is quite similar.

In addition to the familiar Yin–Yang (YY) mesh of

Kageyama and Sato (2004), we also examined a modi-

fied Yin–Yang polar (YY-P) variant discussed in

Staniforth and Thuburn (2012). In general we found that

the modified YY-P and YY meshes exhibited similar

performances on most tests, while the YY-P mesh per-

formed slightly better on cases with strictly zonal flow,

such as west–east solid-body rotation of a cosine bell.

For both meshes, the most straightforward implemen-

tation of the overset boundary comes at the price of losing

the strict mass conservation inherent to the conservative

DG formulation. The flux leaving the Yin grid is spatially

separated from the flux entering the Yang grid and the two

are not guaranteed to exactly cancel each other without

additional constraints. However, this problem is common

to overset methods, and the recent work of Peng et al.

(2006) demonstrated that a local constraint was able to

restoremass conservation in finite-volume simulations.We

believe that it should be reasonably straightforward to

modify Peng’s conservative constraint to restore strict mass

conservation to theDGYin–Yangmethod aswell, which is

something we plan to examine in the near future.
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APPENDIX

Yin, Yang, and Cartesian Transforms

At times, it is necessary or convenient to transform

quantities between the Yin, Yang, and Cartesian co-

ordinate systems. In this section, we derive trans-

formations from Yin to Cartesian and from Yang to

Cartesian, and then compose them to obtain the trans-

formations from Yin to Yang and vice versa.

a. Yin–Cartesian transform

The Yin coordinates are the RLL coordinates l5 (l,

u) with longitude l, latitude u, and radial distance r

(constant on the sphere). The transformation from a

point in Yin coordinates r(l, u) to a point in Cartesian

coordinates r(x, y, z) is given by

x(l, u)5 r cosl cosu

y(l, u)5 r sinl cosu

z(l, u)5 r sinu, (A1)

FIG. 11. Contour plots for the numerical solution of the southwest–northeast (a5 45) moving-vortices test at t5 (from top left clockwise

to bottom left) 3, 6, 9, and 12 days on the YY mesh. Notice the vortex is well resolved at the 2.258 resolution (Ne 5 5, Ng 5 8).
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where the z axis points toward the North Pole and the

x axis point toward the prime meridian. The inverse

transformation is

u5 sin21(z/r) , (A2)

l5 tan21(y/x) . (A3)

The velocity y at point r may be expressed in curvi-

linear coordinates by employing the chain rule

y5
dr(l, u)

dt
5 _l

›r

›l
1 _u

›r

›u
. (A4)

From this expression, the covariant basis vectors are

identified as el 5 ›r/›l and eu 5 ›r/›u and the contra-

variant velocity components are yl 5 _l and yu 5 _u, such

that

y5 _lel 1
_ueu . (A5)

Written in matrix form this equation is

2
664

_x

_y

_z

3
7755

2
666666664

›x

›u

›x

›f
›y

›u

›y

›f
›z

›u

›z

›f

3
777777775

2
4 _l
_u

3
5 , (A6)

where the 3 3 2 matrix is the Jacobian ›x/›l of the

transformation to Cartesian coordinates from Yin co-

ordinates whose columns are the covariant bases el 5
›r/›l and eu 5 ›r/›u.

Repeating the process for the curvilinear velocity

components gives

2
4 _l
_u

3
55

2
6664
›l

›x

›l

›y

›l

›z
›u

›x

›u

›y

›u

›z

3
7775
2
664

_x

_y

_z

3
775 , (A7)

where the matrix is the Jacobian ›l/›x of the trans-

formation to Yin coordinates from Cartesian co-

ordinates whose row vectors are the contravariant bases

el 5 $l and eu 5 $u.
The Yin–Cartesian Jacobian may be easily evaluated

using equation set (A1):

›x

›l
5

2
42r sinl cosu 2r cosl sinu

r cosl cosu 2r sinl sinu

0 r cosu

3
5 , (A8)

while the inverse Jacobian is most easily obtained by

first calculating the contravariant bases.

The covariant metric components are gij 5 ei � ej,
which is equivalent to the matrix product

gij 5

�
›x

›l

�T›x

›l
5

�
r2 cos2u 0

0 r2

�
. (A9)

The Ying coordinates are orthogonal, so the cross terms

in the metric are zero. The determinant of the metric is

g 5 det(gij) 5 r4 cos2u, such that
ffiffiffi
g

p
5 r2 cosu (a term

that appears in the advective transport equation).

The contravariant metric gij 5 ei � ej is the inverse of

the covariant metric gij 5 (gij)
21:

gij 5
›l

›x

�
›l

›x

�T
5

2
664

1

r2 cos2u
0

0
1

r2

3
775 , (A10)

defined for cosu 6¼ 0 and r 6¼ 0. The contravariant basis

vectors may now be extracted by application of the con-

travariant metric ei 5�jg
ijej, such that el 5 el/(r

2 cos2u)

and eu 5 eu/r
2. Assembling the contravariant bases as row

vectors gives the inverse Jacobian matrix

›l

›x
5

2
6664

2
sinl

r cosu

cosl

r cosu
0

2
cosl sinu

r
2

sinl sinu

r

cosu

r

3
7775 . (A11)

Application of the Jacobian and inverse Jacobian ma-

trices allows one to readily convert the velocity fromYin

to Cartesian coordinates and back again. Note, as a

check, it is easily verified that the product of the two

transformation matrices gives the identity matrix

›l

›x

›x

›l
5 I: (A12)

The wind speeds (u, y) are defined in Yin coordinates

such that y5uêl 1 yêu, and as such are related to the

contravariant components by u5 _ljelj5 _l(r cosu) and

y5 _ujeuj5 _ur.

b. Yang–Cartesian transform

The Yang coordinate system l9 5 (l9, u9) is an RLL

system that has been rotated in Cartesian space such that

(x9, y9, z9) 5 (2x, z, y). The transform to Cartesian

components is

x(l9, u9)52r cosl9 cosu9 , (A13)

y(l9, u9)5 r sinu9 , (A14)
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z(l9, u9)5 r sinl9 cosu9 , (A15)

and the inverse transformation is

u95 sin21(y/r) , (A16)

l95 tan21(2z/x) . (A17)

Following the procedure outlined in the previous sec-

tion, the Jacobian of the transformation is found to be

›x

›l9
5

2
4 r sinl9 cosu9 r cosl9 sin u9

0 r cosu9

r cosl9 cosu9 2r sinl9 sinu9

3
5 . (A18)

The covariant metric is

g9ij 5

�
›x

›l9

�T ›x

›l9

�
r2 cos2u9 0

0 r2

�
(A19)

with determinant g95 det(g9ij)5R2 cosu9. The contra-

variant metric is

(g9)ij 5 (g9ij)
215

2
664

1

r2 cos2u9
0

0
1

r2

3
775 (A20)

and the Jacobian of the inverse transformation is

›l9

›x
5

2
664

sinl9

r cosu9
0

cosl9

r cosu9
cosl9 sin u9

r

cosu9

r
2

sinl9 sinu9

r

3
775 . (A21)

c. Yin–Yang transform

The Yin–Cartesian and Yang–Cartesian transforms

may be composed to give direct transformations be-

tween the Yin and Yang coordinate systems. The co-

ordinate transformation from Yang to Yin coordinates

(found by equating x, y, and z) is

u5 arcsin(sinl9 cosu9) , (A22)

l5 arctan(2tanu9/cosl9) , (A23)

and the coordinate transformation from Yin to Yang is

u95 arcsin(sinl cosu) , (A24)

l95 arctan(2tanu/cosl) . (A25)

The Jacobian transformation from Yang to Yin is found

by multiplying the forward and inverse Jacobians

›l

›l9
5

›l

›x

›x

›l9
, (A26)

and the Jacobian transformation matrix from Yin to

Yang is obtained from the matrix product

›l9

›l
5

›l9

›x

›x

›l
. (A27)

d. Reference to curvilinear transforms

In the DG formulation, integrals over the elements

are approximated by Gaussian numerical quadrature.

To perform the quadrature, the area of integration must

first bemapped into the reference coordinate system j5
(j, h), where j 2 [21, 1] and h 2 [21, 1].

Elements of the Yin–Yang grid are rectangular in (l,

u) coordinates, and the transformation from reference to

curvilinear coordinates is a simple linear interpolation,

l5li(12 j)/21 li11(11 j)/2, (A28)

u5 ui(12h)/21 ui11(11h)/2 , (A29)

but in general the relationship may be more complex

(e.g., for an unstructured mesh). The inverse coordinate

transformation is

j5 2(l2l)/Dl , (A30)

h5 2(u2 u)/Du , (A31)

where l5 (1/2)(li11 1 li) and Dl 5 li11 2 li. The

Jacobian of the transformation is

›l

›j
5

2
6664
›l

›j

›l

›h
›u

›j

›u

›h

3
77755

�
Dl/2 0

0 Du/2

�
(A32)

and the inverse Jacobian is

›j

›l
5

2
664
›j

›l

›j

›u
›h

›l

›h

›u

3
7755

�
2/Dl 0

0 2/Du

�
. (A33)

Specifically, this means that the velocity components

transform as _j5 (2/Dl) _l and _h5 (2/Du) _u.

e. Transformation composition

In general, the transformation from reference to Carte-

sian coordinates r(j, h) may be obtained by functional

composition r[l(j, h), u(j, h)]. Rather than calculating the

280 MONTHLY WEATHER REV IEW VOLUME 141



Jacobian and metric terms for each transformation from

scratch, it is simpler to combine them:

›x

›j
5

›x

›l

›l

›j
. (A34)

The metric of the composite transformation is

g(x, j)ij 5

�
›x

›j

�T›x

›j
(A35)

5

�
›l

›j

�T

g(x,l)

�
›l

›j

�
, (A36)

and the determinant of the metric is the product of the

determinants,

gr 5detg(x, j)5 detg(l, j)detg(x,l) , (A37)

such that

ffiffiffiffiffi
gr

p
5

����DlDu4

����r2 cosu . (A38)
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