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ABSTRACT

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-

sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a

class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features

of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-

dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory

(WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order

accurate reconstructionmethod. The cubed-sphere grid system imposes several computational challenges due

to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation

procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the

discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order

Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is

compared using several benchmark problems such as the solid-body rotation and deformational-flow tests,

and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an op-

tional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are

local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-

stepping scheme is used for integration. The results show that schemes are competitive to other published FV

schemes in the same category.

1. Introduction

Because of inherent conservative properties and geo-

metric flexibility, finite-volume-based (FV) discretization

techniques are becoming popular for new generation

global atmospheric models. The cubed-sphere grid

system (Sadourny 1972; Ronchi et al. 1996) provides

quasi-uniform grid structures (control volumes) for at-

mospheric modeling, which is also an ideal system for FV

horizontal discretization. The cubed-sphere grid system is

free of polar singularities and the control volumes (grid

cells) are logically rectangular leading to efficient par-

allel implementation (Yang and Cai 2011). In recent

years, several new models have been developed that

exploit computationally attractive features associated

with the FV discretization and cubed-sphere geometry

(Putman and Lin 2007; Cheruvu et al. 2007; Chen and

Xiao 2008; Ullrich et al. 2010).

The cubed-sphere consists of six identical spherical

surfaces defined by local coordinate systems that are

discontinuous at the edges and corners. Therefore, a

major difficulty in adopting the cubed-sphere geometry

arises from the ‘‘handling’’ of the edges, where a special

treatment is required. As the order of the discretization

increases, the issue becomes more complex.
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To predict the cell averages at the new time level, FV

methods require a reconstruction procedure for fluxes

at the cell edges from the known cell averages. This

involves a computational halo region (stencil) encom-

passing several grid cells.A fully two-dimensional (2D)FV

approach requires ghost cell creation at the cubed-sphere

corner. However, a dimension-by-dimension approach

employing two 1D reconstructions along the coordinate

directions greatly simplifies the problem. Amajor concern

with the dimension-by-dimension approach, the resulting

FV scheme suffers from reduction in formal order of ac-

curacy, and this issue might be more severe in non-

orthogonal curvilinear grid such as cubed-sphere grid. This

motivates us to compare the performance of 1D and 2D

reconstruction high-order FV schemes for a variety of

benchmark tests on the cubed sphere.

We consider a high-order FVdiscretization based on the

so-called central-upwind finite-volume (CUFV) method

introduced by Kurganov and Levy (2000) and Kurganov

and Petrova (2001). The CUFV scheme is a semi-

discretized method combining the attractive properties of

the classical upwind and central FV methods. Its features

include easy A-grid (unstaggered) implementation with

simple Riemann solvers (numerical flux). Because of its

semidiscretized (spatially discretized) formulation, the

time integration can be performed by explicit multistage

Runge–Kutta (RK) solvers resulting in high-order tem-

poral accuracy and increased Courant–Friedrichs–Lewy

(CFL) stability limit.A recent applicationofCUFVmethod

for ocean and atmospheric modeling can be found in

(Adamy et al. 2010; Nair andKatta 2013). For the present

work, we consider two high-order spatial discretizations

(reconstructions). The dimension-by-dimension version

of the FV scheme is based on the fifth-order Weighted

Essentially Nonoscillatory (WENO5) method (Liu et al.

1994; Shu 1997). For multidimensional application, high-

order 2D WENO schemes are computationally pro-

hibitive and rarely used for practical purpose. Therefore,

we consider a fully 2D fourth-order FV discretization as

given in Kurganov and Liu (2012). Our main focus here

is to evaluate the dimension-by-dimension WENO5 re-

constructions in a CUFV framework for linear transport

problemona nonorthogonal curvilinear cubed-sphere grid.

The performance of WENO5 scheme is compared with a

CUFV scheme based on 2D reconstructions as well as

various other high-order FV schemes developed on the

cubed sphere. In addition, we discuss strictly positivity-

preserving filters for both CUFV schemes.

The paper is organized as follows. Section 2 describes

CUFV schemes based on 1D and 2D reconstructions

and its implementation on cubed sphere. In section 3,

time integration schemes and positivity-preserving fil-

ters are discussed. Numerical experiments are described

in section 4, followed by summary and conclusions in

section 5.

2. CUFV formulation

a. 2D linear transport on cubed sphere

We consider the flux-form transport equation in

(x1, x2) space, without a source term as follows:

›U

›t
1$ � F(U)5 0, in D3 (0,T], " (x1, x2) 2 D,

(1)

where U5U(x1, x2, t) is conservative quantity, with the

initial condition U0 5U(t5 0), and T is the final time.

In (1), gradient operator $5 (›/›x1, ›/›x2) and the flux

function F5 (F1, F2). In the case of a cubed sphere,

the computational domain D spans six identical non-

overlapping subdomains (faces Vk) of the cubed-sphere

surface; (x1, x2) are the central angles such that

(x1, x2) 2 [2p/4, p/4], subjected to equiangular central

projection (Ran�ci�c et al. 1996; Nair et al. 2005). Each

subdomain Vk is partitioned into Nc 3Nc nonoverlapp-

ing rectangular cells Vi,j, where i, j5 1, 2, . . . , Nc, so

thatVij 5 [(x1 2 (x1i21/2, x
1
i11/2), x

2 2 (x2j21/2, x
2
j11/2)].Thus,

the total number of cells on the cubed sphere are

63Nc 3Nc. In Fig. 1a a cubed sphere tiled with FV grid

cells is shown, whereNc 5 10 and cell centers are indicated

bydots. Thewidthof each cell isDx1i 5 (x1i11/2 2 x1i21/2) and

Dx2j 5 (x2j11/2 2 x2j21/2), in x
1 and x2 directions, respectively.

The advection equation in the curvilinear coordinates on a

spherewithout the source term is equivalent to the following:

›U

›t
1

1ffiffiffi
g

p ›

›x1
[u1

ffiffiffi
g

p
U]1

1ffiffiffi
g

p ›

›x2
[u2

ffiffiffi
g

p
U]5 0. (2)

The equation can be rearranged similar to (1) in the

following flux form (Levy et al. 2007):

›

›t
[f]1

›

›x1
[F1(f)]1

›

›x2
[F2(f)]5 0, (3)

where f5
ffiffiffi
g

p
U, and fluxes F1(f)5 u1f, F2(f)5 u2f,

with contravariant velocity vectors (u1, u2). Note that

the metric term
ffiffiffi
g

p
has an explicit analytical form in

terms of (x1, x2); details of the transformations and

metric tensor are given in Nair et al. (2005) and Levy

et al. (2007), and will not be discussed herein. Thus, the

solution procedure for (3) in (x1, x2) space is similar to

that for the 2D Cartesian case.

b. CUFV schemes

A large class of FV methods for solving hyperbolic

conservation laws are based on high-order extensions of
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theGodunov scheme (Godunov 1959), collectively known

as theGodunov-type schemes (Toro 1999). These schemes

essentially have three basic steps in the solution process:

reconstruction, evolution, and projection. In recon-

struction step, piecewise polynomials are reconstructed

over the grid cells spanning the domain from the known

cell averages (piecewise constant data) at the previous

time level (van Leer 1974; Colella andWoodward 1984).

In evolution step, the piecewise polynomials are ad-

vanced in time, following the underlying conservation

law. At the final projection step, new cell averages are

computed on each cell by projecting the evolved poly-

nomials onto cell averages. SuchGodunov-type schemes

are broadly classified into upwind and central schemes.

The CUFV combines these two methods resulting in a

class of semidiscrete (continuous in time) scheme, which

are relatively simple and are easy to implement in var-

ious applications. Its novel features include high-order

accuracy, use of simple numerical flux, and can be im-

plemented in a nonstaggered grid system when used

for a system of equations. These make CUFV compu-

tationally attractive for complex domain such as the

cubed-sphere considered here. Detailed discussion of

CUFV schemes including mathematical derivations,

properties, and various practical applications can be

found in a series of papers (seeKurganov and Levy 2000;

Kurganov and Petrova 2001; Kurganov and Liu 2012).

The semidiscrete formulation corresponding to (1)

can be written as follows:

dUij

dt
5

21

Dx1i Dx
2
j

"
�
4

e51

ð
G
e

He � ne
#
, (4)

whereUij is the cell average,He � ne is the numerical flux

defined at the cell walls (interfaces), and ne is the unit

outward-drawn normal vector from the cell boundary

Ge. The average quantityUij, defined over an FV cellVij,

is computed by solving the ordinary differential equa-

tion (ODE) (4) in time. The order of spatial accuracy

and computational efficiency of the FV scheme depends

FIG. 1. Schematic showing a cubed sphere (a) with rectangular FV cells, total 63N2
c cells (Nc 5 10), which span the

entire surface. The flux points along the FV cell walls required for the (b) dimension-by-dimension and (c) fully

2D cases.
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on the polynomial representation forUij and accuracy of

the flux integrals.

Reconstruction functions are piecewise polynomials

Pn
ij(x

1, x2)’Uij(x
1, x2, tn)jVij

, representing the subgrid-

scale distribution at a time t5 tn. They are subjected to

the following conservation constraint:

U
n
ij 5

1

Dx1i Dx
2
j

ðx2
j11/2

x2
j21/2

ðx1
i11/2

x1
i21/2

Pn
ij(x

1, x2) dx1 dx2 , (5)

where U
n

ij is the cell average at time t5 tn. There are

several ways to represent Pn
ij(x

1, x2) and formulate re-

construction procedure. The flux values are computed

using Pn
ij along the boundaries as required in (4). For

example, on the east wall of the cell Vij (i.e., the edge

x1i11/2,j), we get contributions forUi11/2,j from the left and

right edges of the cell walls. They are usually denoted by

U2
i11/2,j and U1

i11/2,j, respectively. The flux at the point is

defined byHi11/2,j(U
2
i11/2,j, U

1
i11/2,j) and computed by the

following formula (Kurganov and Petrova 2001):

Hi11/2,j(t)5
F1[U

1
i11/2,j(t)]1F1[U

2
i11/2,j(t)]

2

2
a1i11/2,j(t)

2
[U1

i11/2,j(t)2U2
i11/2,j(t)] , (6)

where a1i11/2,j(t) is the maximum local speed (absolute

value of the flux Jacobian ›F1/›U) in the x1 direction. In

linear advection case, the flux formula reduces to the

local Lax–Friedrichs (Rusanov) flux as given in (6). For

reconstruction functions Pn
ij, first we consider a

dimension-by-dimension procedure followed by a fully

2D approach as follows.

1) DIMENSION-BY-DIMENSION FIFTH-ORDER

WENO RECONSTRUCTIONS

The dimension-by-dimension case combines two

sweeps of 1D polynomial functions along the coordinate

direction and is subject to the conservation constraint (5).

The WENO schemes are known to be robust for solving

conservation laws. A comprehensive review for WENO

scheme is given in Shu (1997). One can rigorously

derive a fifth-order accurate fully 2D WENO scheme

using a 53 5 stencil. Unfortunately, resulting scheme is

computationally prohibitive and not particularly suitable

for the cubed-sphere grid. Therefore, we consider CUFV

schemebased onWENOreconstructionmethod, where a

fifth-order accurate 1D reconstruction is used in each

coordinate direction, hereafter referred to as WENO5.

TheWENO5 is oneof themost widely used schemes in its

class for various applications. Recently, Norman et al.

(2011) and Blossey and Durran (2008) used WENO5 for

atmospheric modeling; Byron and Levy (2006) applied a

central WENO5 scheme for a system of conservation

laws.

In Fig. 2, a 2D stencil used for the WENO5 is sche-

matically shown with cell centers in the west–east and

south–north directions. Flux evaluation for the WENO5

scheme is required only at four cell walls as indicated in

Fig. 1b, making the computational procedure relatively

simple.A typicalWENOreconstruction process involves a

main computational stencil and several substencils within.

The basic idea of the WENO method is to use a convex

combination of reconstructions from all the stencils and

employ nonlinear weights to achieve highest possible or-

der of accuracy in smooth regions. The WENO scheme

uses a convex combination of nonlinear weights wk from

each stencil, which depends on the local smoothness of the

solution, and results in a nonoscillatory solution. The

smoothness indicators bk, which are a measure of the

smoothness of the solution, are computed for each stencil.

A smaller value of bk indicates a smoother function. The

WENO5 uses a five cell-wide stencil including the cell in

question located at the center, where a family of 1D

polynomials Pk(x) are employed for reconstruction (Shu

1997). We briefly outline the reconstruction procedure as

follows.

The point value required for flux evaluation can be

computed using reconstruction functions. For example,

at the east wall Ui11/2 5Ri11/2, where Ri11/2 is the

FIG. 2. Schematic of the 2D stencil required for KL scheme

where 13 cells are used for reconstructing the fluxes along the cell

boundaries (green lines) on the central cell. Black boxes indicate

the two 1D stencils for WENO5 scheme, along the west–east and

south–north directions, excluding the corner cells. A total of nine

cells are required for WENO5 reconstructions.
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WENO5 reconstruction function at the cell interface

xi11/2, and is defined as

Ri11/2 5 �
r21

k50

wkP
k
i11/2, where Pk

i11/2 5 �
r21

j50

ckjUi2k1j,

k5 0, . . . , r2 1,

(7)

where r5 3 and the constant coefficients ckj are as given

in Liu et al. (1994). The nonlinear weights are defined as

follows:

wk 5ak

,
�
r21

s50

as, ak 5
ck

(�1bk)
2
, k5 0, . . . , r2 1,

where c0 5 3/10, c1 5 3/5, and c2 5 1/10, � is small posi-

tive number to avoid division by zero, and the smooth-

ness indicator bk is defined by

b0 5
13

12
(Ui 2 2Ui111Ui12)

21
1

4
(3Ui2 4Ui111Ui12)

2 ,

b15
13

12
(Ui212 2Ui 1Ui11)

21
1

4
(Ui212Ui11)

2 ,

b2 5
13

12
(Ui222 2Ui211Ui)

21
1

4
(Ui222 4Ui211 3Ui)

2.

The values U6
i11/2 at the interfaces are evaluated from

the reconstruction functions, followed by computations

of the east and west fluxes Hi61/2,j using (6). Extending

this procedure in x2 direction yields the fluxes at the

north and south walls Hi,j61/2. Thus, using the WENO5

scheme in a dimension-by-dimension manner (Shu

1997; Kurganov and Petrova 2001) the fluxes at four

points (as shown in Fig. 1b) can be computed. Now the

2D semidiscrete scheme in (4) takes the following

form:

d

dt
Uij(t)52

Hi11/2,j(t)2Hi21/2,j(t)

Dx1

2
Hi,j11/2(t)2Hi,j21/2(t)

Dx2
, (8)

which can be solved by a high-order RK ODE solver.

Although the dimension-by-dimension approach is rel-

atively easy to implement on the cubed sphere, formal

order of accuracy of the resulting schememay be limited

to second order. This is due to the fact that the cross-

derivative terms (›U/›x1›x2) are ignored in the poly-

nomial reconstruction.

2) FULLY 2D RECONSTRUCTIONS

We consider the fourth-order fully 2D reconstruction

functions used by Kurganov and Liu (2012) combined

with the simple equation (6), the resulting CUFV

scheme is hereafter referred to as the Kurganov–Levy

(KL) scheme. For a FV cellVij in (x, y) Cartesian plane,

the reconstruction function is given by

Pij(x, y)5 a0,01 a1,0(x2 xi)1 a0,1(y2 yj)1 a1,1(x2 xi)(y2 yj)1 a2,0(x2 xi)
2

1 a0,2(y2 yj)
21 a0,3(x2 xi)

31 a3,0(y2 yj)
31 a2,1(x2 xi)

2(y2 yj)

1 a1,2(x2 xi)(y2 yj)
21 a4,0(x2 xi)

41 a2,2(x2 xi)
2(y2 yj)

21 a0,4(y2 yj)
4 , (9)

where the 13 coefficients am,n, 0# (m1 n)# 4, are

functions of the partial derivatives (resulting from

a Taylor series expansion) ›m1nP(x, y)/›mx›ny, and

subject to the conservation constraint (5). Details

of the derivation can be found in Kurganov and

Liu (2012), however, we provide the coefficients

needed for flux computations in appendix A.

Note that CUFV scheme using 2D reconstructions

(9) requires a computational stencil as shown in

Fig. 2.

For a fully 2D scheme, three flux points are located

along each cell wall as shown in Fig. 1c. The line in-

tegrals along the cell walls are evaluated using three-

point Simpson’s rule. Here we only show the evaluation

for the east wall of Vij, and the flux evaluation for the

other walls follow the same pattern. The formula is

given asð
G
East

H � n’Hi11/2,j

5
Dx2

6
[Ĥi11/2,j21/2 1 4Ĥi11/2,j 1 Ĥi11/2,j11/2] ,

(10)

where Ĥi11/2,j11/2 indicates a point-flux evaluation using

(6) at the northeast corner, and Hi11/2,j is the net flux at

the east wall. Using letter symbols as indicated in

Fig. 2, feast (E), west (W), north (N), south (S), southeast

(SE), southwest (SW), northeast (NE), northwest (NW)gin-
stead of subscripts (i61/2,j61/2, etc.), the flux Hi11/2,j in
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(10) can be written as follows (Kurganov and Petrova

2001):

Hi11/2,j5
1

12
fF(UNW

i11,j)1F(UNE
ij )14[F(UW

i11,j)1F(UE
ij )]

1F(USW
i11,j)1F(USE

ij )2a1i11/2,j3 [UNW
i11,j2UNE

ij

14(UW
i11,j2UE

ij )1USW
i11,j2USE

ij ]g ,
(11)

where a1i11/2,j is the maximum local speed in the x1 di-

rection. See appendix A for details of flux computations

in (11). Using symmetry the fluxes as required in (8),

Hi21/2,j and Hi,j61/2 can be computed.

3) TREATMENT AT THE CUBED-SPHERE EDGES

High-order FV schemes require a wider computa-

tional stencil involving several cells. Because of the co-

ordinate discontinuity at the edges of the cubed-sphere

face, creation of such stencils is a challenging task for the

cubed-sphere grid system. Each face of the cubed sphere

has logically rectangular cells, however, by the virtue of

equiangular (central) projection this further simplifies

(i.e., in the computational domain Dx1 5Dx2). For the
CUFV scheme considered herein, we employ the com-

putational stencil as seen in Fig. 2, which requires two

grid cells on both sides along the coordinate directions

forWENO5 (total nine cells), and four additional corner

cells (ghost cells, colored in red) in the case of fully 2D

reconstructions. On the surface of the cubed-sphere the

cell centers (where cell averages are computed) lie along

great-circle arcs. We adopt a strategy described in

Ronchi et al. (1996), Yang et al. (2010), and Rossmanith

(2006), where the grid lines are extended to both edges

along the great-circle arcs beyond the usual range

[2p/4, p/4], and perform high-order 1D interpolations.

For subdomain extensions, we also exploit a property

of the central projection by which the extended points

on the overlap regions lie along great-circle arcs. In our

case the grid lines need to be further extended by two

grid cells (ghost cells) at the edges, which are located on

the neighboring panels (see Fig. 3). However, each

horizontally extended point (say in the x1 direction) is

straddled by grid points from the adjoining panel along a

great-circle arc, but in the vertical (x2) direction.

To illustrate the 1D interpolation process, we consider

two lateral adjoining panels as shown in Fig. 3, where the

cell centers are marked as red and blue points, with

known spherical coordinates. Let uk, k5 1, 2, . . . , N be

the latitudes of cell centers on the right panel (blue

points) and located next to the edge line in the x2 di-

rection. These points serve as source points for 1D in-

terpolation along the great-circle arc, and are marked

as a vertical dotted line in Fig. 3. The target points are

positioned at the cell centers of the ghost cells, which are

extended on the halo zone. Let the latitudes of target

points be u0k, k5 1, 2, . . . , N, which are located along the

same dotted line and denoted by red circles (Fig. 3), in

such a way that u01, . . . , u
0
N 2 [u1, uN]. Since the source

and target points lie along the same great-circle arc

(analogous to a straight line in 2DCartesian geometry), a

natural and easy option for finding the values at the target

points is by employing 1D high-order interpolations.

We use the cubic-Lagrange interpolation along the

dotted lines to compute cell averages at the target points

(on halo cells) u02, u
0
3, . . . , u

0
N21. The values at the corner

(halo) point, say at u01, can be computed by a quadratic

interpolation using the known values at source points

u1, u2, and u3; similarly, the cell average at u0N can be

quadratically interpolated. The cell-average values at

the second layer of halo cells required for WENO5 and

KL schemes can be computed in a similar manner. Using

the symmetry of the cubed-sphere grid system, the source

and target coordinates (uk, u
0
k, . . . ) can be reused for any

cubed-sphere edges, and the implementation of this pro-

cedure is straightforward for the dimension-by-dimension

schemes. The combination of cubic and quadratic 1D in-

terpolation avoids using information from the third panel,

FIG. 3. Horizontal extensions of the cubed-sphere grid points at

the edges to form halo regions (cells) required for the CUFV

computational stencils. For any two adjoining panels, the extended

grid points are exactly located along a great-circle arc joining the

grid points from the other panel in the vertical direction, which are

shown as dashed lines. 1D interpolations are performed along these

lines using the cell averages at regular grid points (source points) to

find the cell averages for the extended grid points (target points).
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and reduces error. Also we found that 1D high-order

(quintic) interpolation, which uses information from the

third panel, can deteriorate the convergence rate. A fully

2D scheme requires an additional ghost-cell value for the

reconstruction at the corner cell (see Fig. 2), which can be

interpolated quadratically from the neighboring cell av-

erages. Note that a drawback of this 1D approach may be

the use of quadratic interpolation (a lower-order opera-

tion) at the corner cell, and computation of ghost-cell

values for KL scheme. Thismay have some adverse effect

on the global convergence rate.

Handling of the cubed-sphere edges for fully 2D

scheme can be performed in a more sophisticated way

for better accuracy, but at a higher computational cost.

The multimoment FV scheme by Chen and Xiao (2008)

identifies one layer of the target cells on the halo zone as

described above. To find the ghost-cell values, a 2D in-

terpolation is performed using the readily available local

moments. This method seems to be very accurate but

only suitable for multimoment FV schemes. Ullrich

et al. (2010) proposed novel high-order FV schemes on

the cubed-sphere, where the ghost-cell averages are

obtained by using the Gauss quadrature over the target

cell, which involves sampling the values at the quadra-

ture points by the local reconstruction polynomials.

However, for simplicity we do not employ this method

for the KL scheme, rather we use the 1D approach de-

scribed above. Using the common 1D interpolation

procedure for both the WENO5 and KL schemes

facilitates a closer comparison.

3. Time integrations and positivity filters

a. Time integration scheme: SSP-RK (5,4)

After the spatial discretization with FV schemes, the

continuous equation (3) reduces to a semidiscretized

ODE (8), which can be represented in the following

general form:

d

dt
U(t)5L(U) in (0,T] , (12)

whereL denotes the spatial discretization resulting from

CUFV scheme. There are a wide variety of time in-

tegrators available to solve the ODE (12). However, we

only consider the explicit RK time integration method.

A new class of optimal high-order strong stability

preserving (SSP) and low-storage SSP RK schemes with

stage (s). order (p), have been proposed by Spiteri and

Ruuth (2002). These schemes are more efficient than

the known schemes with s5 p, due to the increase in the

allowable time step, which more than compensates the

added computational cost per step. Another advantage

of these is they do not generate new local maxima or

minima (or total variation diminishing property in time)

because of the time discretization. In the present work,

we use five-stage fourth-order SSP-RK scheme [or SSP-

RK (5,4)] for WENO5 and KL schemes. Note that the

allowable time step for this scheme is greater than that

of the Shu–Osher fourth-order scheme and fourth-order

explicit RK scheme (Gottlieb et al. 2001). The CFL limit

for this scheme is approximately 1.5. The SSP-RK (5,4)

scheme can be written in the following way:

U(0) 5Un ,

U(i) 5 �
(i21)

k50

[aikU
k 1DtbikL(U

k)], i5 1, 2, . . . , s ,

Un115U(s) .

Constants aik and bik are given in appendix B.

b. Positivity-preserving filters

TheWENO schemes can control spurious oscillations

in the solution to a great extent, nevertheless, there is no

guarantee that it will always keep the numerical solution

within the legitimate (physical) bounds. The numerical

solution with WENO schemes may still have small am-

plitude oscillations, in other words, these schemes are

only ‘‘essentially’’ nonoscillatory, but not strictly posi-

tivity preserving. Another issue is that the final semi-

discrete FV equation (8) itself may be a source for tiny

spurious negative numbers due to numerical precision

errors. This is because on the right side of (8), time ten-

dencies are computed as differences of fluxes through the

cell walls, when the values of the fluxes are very close, the

net result may have a negative sign (with very small

magnitude). For many atmospheric tracers such as hu-

midity and mixing ratios, the global maximum and min-

imum values are known in advance, moreover, for which

negative values are not acceptable. To address this issue

we implement optional positivity-preserving filters to the

CUFV schemes.

First, we discuss a bound-preserving (BP) conservative

filter, which is particularly useful when the global mini-

mum and maximum value of the solution is known in

advance. In the present work we implement the BP filter

for the schemes considered. The BP filter relies on local

reconstruction polynomial, and it is computationally in-

expensive. The BP filter is based on the Liu and Tadmor

(1998) limiter. Recently, Zhang and Shu (2010) extended

this for high-order discontinuousGalerkin (DG) schemes,

and Zhang and Nair (2012) implemented the BP filter

for aDG transport scheme on the cubed sphere.We apply

this filter for both WENO5 and KL reconstruction

polynomials.
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Let Pij(x, y) be a reconstruction polynomial on a cell

Vij with a known cell average of Uij. The BP filter re-

places Pij(x, y) by a bound preserving reconstruction
~Pij(x, y) as follows:

~Pij(x, y)5 uijPij(x, y)1 (12 uij)Uij , (13)

where the limiter function uij 2 [0, 1], is defined as

uij 5min

(�����
M2Uij

Mij 2Uij

�����,
�����
m2Uij

mij 2Uij

�����, 1
)
, (14)

where M and m are the global maximum and minimum

values, respectively, of the initial condition. The local

extrema Mij, mij on a cell Vij are given by

Mij 5 max
(x,y)2V

ij

fPij(x, y)g, mij 5 min
(x,y)2V

ij

fPij(x, y)g .

(15)

The extremaMij andmij are numerically evaluated from

the reconstructed point values on the cell boundary,

which are corrected using (13) and then ~Pij(x, y) can be

used for computing fluxes.

A scheme is considered to be positive definite, if it does

not introduce any negative values in the computed solu-

tion fromnonnegative initial values.However, because of

arithmetic precision errors as mentioned above, the so-

lutions with very small magnitude might still have nega-

tive signs. A positivity-preserving (or sign preserving)

(PP) filter may be applied at the final stage of computa-

tion to completely eliminate unacceptable negative so-

lution. To ensure the positivity of the solution, we employ

the PP filter based on an upstream renormalization ap-

proach developed by Smolarkiewicz (1989). For oscilla-

tions with small amplitude this filter is very robust, andwe

apply the PP filter as the finalization process for CUFV

combined with BP filter. The PP filter is local, computa-

tionally cheap, and easy to implement. Recently, Blossey

andDurran (2008) implemented the PP filter for their FV

schemes, this is in fact, a special case of the flux-corrected

transport (FCT) algorithm (Durran 1999). The details of

the PP algorithm can be found in Smolarkiewicz (1989).

Note that the BP filter is only applicable when the global

extremaM andm are known, and it is considered to be a

limitation of this approach (Zhang and Nair 2012).

4. Numerical experiments

For the spherical advection experiments, we use sev-

eral benchmark tests such as the solid-body rotation

tests and the deformational-flow tests. One can use the

point values created at the cell centers with the (exact)

initial conditionU(t5 0), as the cell averages (Lauritzen

et al. 2010). However, for better consistency, we create

33 3 point values initially on each cell (see Fig. 1c), and

then the cell-averaged value Uij is computed by the

following Simpson’s rule:

Uij 5
1

36
(Ui21/2,j21/21Ui21/2,j11/21Ui11/2,j21/2

1Ui11/2,j11/21 4Ui21/2,j 1 4Ui11/2,j

1 4Ui,j21/21 4Ui,j11/21 16Uij) . (16)

The normalized standard errors ‘1, ‘2, and ‘‘ used for the

test cases are as those defined inNair andLauritzen (2010).

a. Solid-body rotation tests

We first consider the solid-body rotation test pro-

posed byWilliamson et al. (1992), where a ‘‘cosine bell’’

is used as scalar field U. Since the exact solution is

known at all times, error measures can be computed.

The cosine bell is defined in spherical coordinates (l, u),

where l is the longitude and u is the latitude:

U(l, u, 0)5

(
(h0/2)[11 cos(prd/r0)] if rd , r0
0 if rd $ r0

, (17)

where rd is the great-circle distance between (l, u) and the

center of the bell. The cosine bell with base radius

r0 5Ra/3 is placed at (lc, uc)5 (3p/2, 0), which corre-

sponds to the center of the face (F4) on the cube. The

height of the bell is h0 5 1000m, and radius of the earth

Ra 5 6:371 223 106 m. The spherical velocity components

(us, ys) of the nondivergent wind field are defined to be

us 5u0(cosa0 cosu1 sina0 cosl sinu) and

ys 52u0 sina0 sinl .

Here u0 5 (2pRa)/(12 days) and a0 is the angle between

axis of cosine-bell rotation and the polar axis of the

spherical coordinate system. It takes 12 simulated days

(288 h) to complete one revolution around the sphere.

When a0 5 0, p/2, and p/4, the flow is oriented along the

equator (east–west), poles (north–south), and diagonal

(northeast) directions, respectively. The flow along the

northeast direction is the most challenging case, since

the bell passes through four vertices and two edges to

complete one revolution around the sphere; we use this

particular configuration.

Although the cosine-bell initial condition is widely

used for testing the accuracy of spherical advection

schemes, it is not a good choice for convergence study

because the scalar field (17) is only a C1 function. For

convergence tests we consider a smooth Gaussian
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distribution (C‘), which is defined as below in terms of

absolute Cartesian coordinates:

(X ,Y,Z)5 (Ra cosu cosl,Ra cosu sinl,Ra sinu) , (18)

U(l, u, 0)5 hmax expf2b0[(X2Xc)
21 (Y2Yc)

2

1 (Z2Zc)
2]g , (19)

where the parameters hmax 5 1000m, b0 5 40m22 so

that the Gaussian profile has a comparable height and

base radius with that of the cosine bell on the sphere.

The center of the Gaussian profile is initially located at

(lc, uc)5 (3p/2, 0), which corresponds to the Cartesian

coordinates (Xc, Yc, Zc), and is related through (18). All

other parameters including the wind field are set to be

FIG. 4. Results of the cosine-bell advection test on the cubed sphere after one revolution (12 days) with the

WENO5 scheme. The wind field is oriented along the northeast direction (a0 5p/4), on a 483 483 6 grid (Nc 5 48),

with Cmax 5 0:25. (a) Initial (cell averaged) height (m) of the cosine bell, (b) numerical solution without any filter,

(c) solution with BP filter, and (d) solution with the BP and PP filters.
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the same as in the case of cosine-bell test. For the solid-

body rotation tests we report on the global maximum of

the directional Courant numbers Cmax, which is defined

as follows (Rossmanith 2006):

Cmax5max

�
ju1j Dt

Dx1
, ju2j Dt

Dx2

�
, (20)

and the number of time steps Nstep 5 12 days/Dt, re-
quired for a complete revolution on the sphere.

First, we demonstrate the effect of BP and PP filters

with the cosine-bell advection test. For this experiment

the WENO5 scheme was selected on a 483 483 6 (or

Nc 5 48) cubed-sphere grid with a0 5p/4, Nstep 5 1350,

and Cmax ’ 0:25. The solutions after one revolution are

shown in Fig. 4 for different combinations of the filters.

Without using any filter the WENO5 scheme produces

spurious oscillations (see Fig. 4b, where the minimum

value ’28 m). Spurious oscillations in the solution are

successfully suppressed by the BP filter. Nevertheless,

there are still minute negative values [O(21023)] left in

the solution (Fig. 4c), which are completely removed by

applying the PP filter, as seen in Fig. 4d. In addition, we

have compared the time traces of normalized ‘2 errors

for different combinations of the filters, however, the

application of BP and PP filters did not degrade the

accuracy of the scheme (results are not shown).

To compare the resultswith other high-orderFVmodels,

we conducted additional experiments for the cosine-bell

test. At a resolution 403 403 6 with Nstep 5 192 (i.e.,

Dt5 90 min, Cmax ’ 1:4), the ‘1, ‘2, and ‘‘ errors for

WENO5 (with the BP filter) are 0.0202, 0.0142, and 0.0153,

respectively. Time tracers of normalized errors are shown

in Fig. 5, where the results withWENO5 are slightly better

than thatwith theKLscheme for ‘1 and ‘2 errors, but the ‘‘
error is smaller for the KL scheme. No obvious noises are

generated by cubed-sphere edges and the interpolation

seems to be performing as expected. Note that this

experiment configuration is similar to that used by Ullrich

et al. (2010) for a fourth-order FV scheme for their

Fig. 5; however, error measures are smaller for both

WENO5 and KL cases. This indicates that the in-

terpolation procedure we used at the cubed-sphere

edges is accurate. When the number of time steps is

further decreased to Nstep 5 160 (Cmax ’ 1:7), the

error measures are ‘1 5 0:0242, ‘2 5 0:0172, and

‘‘ 5 0:0131; showing WENO5 is still accurate at a

higher Courant number.

This experiment is repeated for a lower grid reso-

lution 323 323 6 with Nstep 5 256 (Cmax ’ 0:9), and

the normalized errors are ‘1 5 0:0401, ‘2 5 0:0276, and

‘‘ 5 0:0245. With the same experimental set up the

conservative semi-Lagrangian multitracer transport

scheme (CSLAM; Lauritzen et al. 2010), produces er-

rors ‘1 5 0:0765, ‘2 5 0:0414, and ‘‘ 5 0:0255, higher

than the results with WENO5. Note that CSLAM is a

third-order conservative semi-Lagrangian method that

does not require special interpolation procedure at the

cubed-sphere edges, as required in the case of typical

Eulerian FV methods. The fourth-order FV method

FIG. 5. Time traces of the normalized errors ‘1, ‘2, and ‘‘ for the cosine-bell advection test with the (a)WENO5 and

(b) KL schemes. Flow is along the northeast direction (a0 5p/4) on the cubed sphere at a resolution 403 403 6, for

12 days (Nstep 5 192 for one revolution).
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(Chen and Xiao 2008) and the third-order discontinuous

Galerkin method (Zhang and Nair 2012) are essentially

based on multimoment approach. Although they are

relatively expensive algorithms, they possess several

computationally attractive features such as multiple

degrees of freedom for each cell to evolve in time and

compact computational stencils (no or smaller halo re-

gions), because of that they have robust ways to handle

flux exchanges at the cubed-sphere edges. This could

be a reason why the error measures reported by these

schemes for solid-body rotation test at a resolution

323 323 6 are better than those results withWENO5 or

KL scheme.

Figure 6 shows the convergence of normalized errors

(‘2, ‘‘) for the solid-body rotation test with a smooth

Gaussian hill (19) initial condition. We achieved a third-

to fourth-order convergence with both the WENO and

KL scheme, for different flow orientations (a0 5 0, p/4),

where the WENO5 scheme has a slightly better conver-

gence rate as opposed to the KL scheme. The ‘‘ error

(Figs. 6b,d) shows a better convergence rate for both

schemes for equatorial flow (a0 5 0). For a solid-body

rotation test with a Gaussian hill on 2DCartesian grid, we

observed fourth-order convergence rate (results are not

shown) for both theWENO5andKL schemes.Wecannot

expect the same order of accuracy on the cubed-sphere

FIG. 6. Convergence results with the solid-body rotation of a Gaussian hill for the WENO5 and KL schemes. The

normalized errors (a) ‘2 and (b) ‘‘, when the flow is along the equator (a0 5 0). The normalized errors (c) ‘2 and

(d) ‘‘, when the flow is in the northeast direction (a0 5p/4).
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grid because of its inherent complexity. This indicates

that a reason for degradation in convergence rate ismostly

due to the corner-cell handling by quadratic interpolation

and the ghost-cell approximation for the KL scheme.

b. Deformational flow test: Moving vortices

The first deformational test we use is the ‘‘moving

vortices’’ test case introduced in Nair and Jablonowski

(2008). Two steady vortices are created on a sphere,

whose centers are located at diametrically opposite

sides. The flow field is nondivergent, time dependent,

and highly deformational; the vortices move along a

great-circle trajectory while deforming, with the known

exact solution. This test is more challenging than the

solid-body rotation test, and particularly useful for ad-

vection schemes developed on cubed-sphere geometry.

For the current tests, the vortex flow field is oriented

along the northeast direction (a0 5p/4) so that the

vortex centers pass through the vertex and edges of the

cubed sphere. The exact solution at time t is defined by

(Nair and Jablonowski 2008):

U(l0, u0, t)5 12 tanh

�
r

g0
sin(l0 2v(u0)t)

�
,

where (l0, u0) are the rotated spherical coordinates with

respect to the regular (l, u) coordinates, r5 r0 cosu
0 is

the radial distance of the vortex, and the parameters

r0 5 3 and g0 5 5. Angular velocity v(u0) is defined in

terms of tangential velocity Vt:

v(u0)5
�
Vt/(Rar) if r 6¼ 0,

0 if r5 0,

and the tangential velocity of the vortex field is defined by

Vt 5u0
3

ffiffiffi
3

p

2
sech2(r) tanh(r) ,

where u0 5 2pRa/(12days), scaled such that 12model days

are required for the full evolution of the vortices, which is

the same time taken for a complete revolution around the

sphere. The time-dependent wind field (us, ys) is given by

us(t)5u0(cosu cosa01 sinu cosl sina0)

1Ravfsinuc(t) cosu2 cosuc(t) cos[l2 lc(t)] sinug,
ys(t)52u0(sinl sina0)1Ravfcosuc(t) sin[l2 lc(t)]g ,

where a0 is the flow orientation parameter as used in the

solid-body rotation case. Initial conditions for the vortex

field are U(l0, u0, 0), with a vortex center kept at

[lc, (t5 0), uc(t5 0)]5 (3p/2, 0).

The cubed-sphere resolution is chosen to be

803 803 6 (or Nc 5 80, which corresponds to 1.1258
resolution at the equator) so that the results could be

compared to that with CSLAM and FV (Putman and

Lin 2007) schemes. The flow fields are oriented along the

northeast direction (a0 5p/4) with Nstep 5 750. Figure 7

shows initial, halftime (6 days), and final (12 days) vor-

tex fields in Figs. 7a, 7b, and 7c, respectively, where the

numerical simulations (Figs. 7b and 7c) are done with

FIG. 7. Numerical solutionwith theWENO5 scheme for themoving vortices test. (a) Initial vortex field, (b) solution at halftime (6 days),

and (c) solution at after full evolution (12 days). The vortices move along the northeast direction (a0 5p/4) while evolving. A cubed

sphere with Nc 5 80 and Cmax ’ 0:25 is used for the simulation.
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the WENO5 scheme. For brevity we do not show the

time series of normalized errors. After a complete rev-

olution without BP filter, the normalized errors with the

WENO5 scheme are ‘1 5 0:0021, ‘2 5 0:0042, and

‘‘ 5 0:0191, and with the KL scheme errors are

‘1 5 0:0021, ‘2 5 0:0043, and ‘‘ 5 0:0194. When the BP

filter is applied, the WENO5 errors are ‘1 5 0:0024,

‘2 5 0:0043, and ‘‘ 5 0:0190 and the corresponding er-

rors for the KL scheme are ‘1 5 0:0024, ‘2 5 0:0042, and

‘‘ 5 0:0193. Thus, application of the BP filter causes

only a slight change for ‘1, ‘2, and ‘‘ errors. This is an

important feature of the BP filter, which does not de-

stroy the accuracy of smooth fields while keeping the

solution bounded. However, a typical slope limiter (van

Leer 1974; Colella and Woodward 1984) may clip the

legitimate extrema of smooth solution. Note that qual-

itatively there is no significant difference between the

solution with the WENO5 and KL schemes. The results

with the moving vortex test case are comparable to the

third-order CSLAM, and that reported by Putman and

Lin (2007), which is an FV scheme combined with high-

order boundary treatment.

c. Deformational flow test: Slotted cylinders

To further validate the CUFV schemes on the sphere,

we use a challenging benchmark deformational flow test

case recently developed by Nair and Lauritzen (2010).

We are particularly interested in nonsmooth (twin

slotted cylinder) initial conditions. The initial distri-

butions are deformed into thin filaments halfway

through the simulation while they are being trans-

ported along the zonal direction by the solid-body

component of the flow.

The initial twin slotted-cylinder data are given by

U(l, u)5

8>>><
>>>:
c if ri # r, jl2 lij$ r/6, i5 1, 2,

c if r1# r, jl2 l1j, r/6, u2 u1,25/12r ,

c if r2# r, jl2 l2j, r/6, u2 u2. 5/12r ,

b otherwise,

FIG. 8. Numerical solution for the deformational flow test on a cubed sphere with mesh 90 3 90 3 6 with twin slotted cylinders as the

initial condition. (a) The initial solution in which these two cylinders move along the zonal direction while deforming, and reach the initial

position after making a complete revolution. The solution after time (b) T/2 and (d) T5 5 (nondimensional time units) using theWENO5

scheme, and (c) the solution after time T using the KL scheme.
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where c5 1, b5 0:1, the radius of the cylinder r5 1/2,

and ri 5 ri(l, u) is the great-circle distance be-

tween (l, u) and a specified center (li, ui) of the unit

sphere:

ri(l, u)5 arc cos[sinui sinu1 cosui cosu cos(l2 li)] .

The initial positions of the centers of the distributions

are at (l1, u1)5 (5p/6, 0) and (l2, u2)5 (7p/6, 0), re-

spectively. The slots are oriented in opposite di-

rections for the two cylinders so that they are

symmetric with respect to the flow. Figure 8a shows

the initial position.

The wind field is nondivergent but highly de-

formational. The initial distributions are deformed

into thin filaments halfway through the simulation

while they are being transported along the zonal di-

rection by the solid-body component of the flow. Note

that an exact solution for this test is only available at

the final time t5T, and it is identical to the initial

condition. The time-dependent nondivergent wind

field is defined as

us(l, u, t)5 k sin2(l0) sin(2u) cos(pt/T)1 2p cos(u)/T

ys(l, u, t)5 k sin(2l0) cos(u) cos(pt/T) ,

where l0 5 l2 2pt/T, k5 2:0, and T5 5 in non-

dimensional time units.

The same test case can be used for convergence

studies, if the slotted cylinders are replaced by two

symmetrically located Gaussian hills in (19), as dis-

cussed in Nair and Lauritzen (2010). Recently, this test

case has been considered in Lauritzen et al. (2012) for

comparing various advection schemes. The initial

smooth fields (C‘) undergo extreme deformation and

translation during the simulation, and return to their

initial position at the final time step. This test is designed

to be very challenging for global transport schemes es-

pecially on the cubed sphere. We consider this test to

further evaluate the convergence of the WENO5 and

KL schemes.

Figure 8 shows the results of the deformational flow

tests with the WENO5 scheme in Figs. 8b and 8d, re-

spectively, at halftime (t5T/2) and final time (t5T).

Figure 8c shows the results with KL scheme at final

time. The normalized errors at final-time T, with

the WENO5 scheme are ‘1 5 0:146, ‘2 5 0:175, and

‘‘ 5 0:533, and with the KL scheme errors are

‘1 5 0:147, ‘2 5 0:175, and ‘‘ 5 0:534. The maximum

initial CFL for this simulation was Cmax ’ 0:75, on a

cubed-sphere grid with Nc 5 90. The WENO5 and KL

schemes results are comparable to those reported in

Nair and Lauritzen (2010). It is clear from Fig. 8 that

the BP and PP filters used in the schemes completely

remove the spurious oscillations.

Figure 9 shows the convergence of the normalized

errors with smooth deformational flow involving

double-Gaussian fields. Clearly both WENO5 and KL

show more than second-order convergence for the

complex flow fields, and the results are comparable to

FIG. 9. Convergence for the deformational flowwith double-Gaussian fields for the normalized errors (a) ‘2 and (b) ‘‘
for the WENO5 and KL schemes.
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the CSLAM scheme as shown in Lauritzen et al.

(2012). The semi-Lagrangian scheme with reduced

dependence (flux based) on grid geometry shows a

better convergence rate for this test as shown in Erath

and Nair (2014). A degradation in the convergence

may be due to the fact that both schemes rely on a

quadratic interpolation method at the corner (halo)

cells of the cubed sphere. A rigorous approach would

be employing the compact Hermit interpolation re-

cently introduced by Croisille (2013) or interpolation

with localized radial basis functions at the cubed-

sphere corners. However, we do not consider these

advanced methods for the present study.

We roughly calculated the execution time taken by each

scheme for the same test. From the comparison results we

found that the WENO5 and KL schemes take almost

same amount of time to compute. In general, our com-

parison study indicates that the dimension-by-dimension

WENO5 is very competitive as compared to the fully two-

dimensional KL scheme in terms of accuracy and

efficiency.

5. Summary and conclusions

Central-upwind finite-volume (CUFV) schemes

are a class of Godunov-type method for solving hy-

perbolic conservation laws, and combine the nice fea-

tures of the classical upwind and central FV methods.

Semidiscrete central schemes are high-order accurate

and nonoscillatory, depending on the reconstruction

procedure, and these features make them computa-

tionally attractive for atmospheric numerical mod-

eling. We consider semidiscretized high-order CUFV

schemes with a dimension-by-dimension fifth-order

WENO reconstruction (WENO5) and a fourth-order

fully 2D (KL) reconstruction. The flux computations

are based on flux formula introduced in Kurganov and

Petrova (2001), which employs a compact approach and

relies on local wind speed. Time integration is per-

formed with a fourth-order Runge–Kutta method for

the WENO5 and KL schemes.

The WENO-based schemes are only essentially

nonoscillatory indicating that oscillations of small am-

plitude will still remain in the solution. In a strict sense

WENO schemes are not positivity preserving. To ad-

dress the positivity issue, a bound-preserving (BP)

conservative filter is combined with WENO re-

constructions, and a positivity-preserving (PP) filter is

used. The BP and PP filters are local and computa-

tionally inexpensive. To compare these schemes we use

several benchmark tests on the cubed-sphere geome-

try. The cubed-sphere geometry is a challenging com-

putational domain for FV schemes, because of the

nonorthogonal curvilinear geometry and grid discon-

tinuities at the edges and corners. We used a 1D in-

terpolation method to extend grid points (ghost cells)

along the great-circle arc at the edges for computa-

tional stencils. This interpolation procedure combines

quadratic and cubic-Lagrange interpolations and does

not require a third panel at the corner ghost cell, which

simplifies the implementation of the WENO5 and KL

schemes.

The advection tests on the sphere include solid-body

rotation of a cosine bell and moving (deforming) vor-

tices. These two tests are quasi smooth; all the error

norms show that the results with WENO5 and KL

schemes are very close. In addition, a new challenging

deformational flow test was also used to assess the

performance of the nonoscillatory scheme in the pres-

ence of strong discontinuities. The BP and PP filter

combination perform very well for the nonsmooth

problem, and it does not degrade the accuracy when the

problem is smooth. The execution time was roughly

calculated using the WENO5 scheme as a basic refer-

ence, and it shows that KL scheme takes little less time

to compute and produces similar results. The error

norms suggest that the results with spherical WENO5

and KL are comparable to those published with recent

high-order (global) FV schemes (Ullrich et al. 2010;

Chen and Xiao 2008).

The 1Dcomponent of theWENO5 scheme is fifth-order

accurate, nevertheless, the dimension-by-dimension ap-

proach may cause reduction in the formal order of accu-

racy of the resulting 2D scheme to second order. However,

the empirical convergence rate for a smooth solid-

body rotation test indicates that both theWENO5 and

KL schemes maintain an order of accuracy between

the third and fourth order. For a very challenging

deformational flow test (Lauritzen et al. 2012) the

order of accuracy further reduces, and is in between

the second and third order. Unfortunately other high-

order FV models (recently published) do not report

empirical convergence results with the deformational

flow tests.

In terms of practical implementation (algorithmic

simplicity), WENO5 is a clear winner because the un-

derlying computational stencil is simple and does not

require corner ghost cells. The 1D method used for cre-

ating halo regions may not be the best choice, espe-

cially for high-order fully 2D FV schemes. However, a

new method based on a Hermitian compact stencil is

available (Croisille 2013) for cubed-sphere grids for

high-order interpolations. We will further investigate

this approach for our future applications. The Gaussian

quadrature approach proposed by Ullrich et al. (2010)

might be a good option for the 2D KL scheme, and is a
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topic for a future study. The benefits of BP and PP fil-

ters with CUFV schemes will be further studied for

preservation of the tracer correlation and other desir-

able properties required for atmospheric chemistry

applications (Lauritzen et al. 2012). It is not clear

whether theWENO5 can perform better than a fully 2D

scheme for nonlinear problems. This will be a matter

for a future study, using a nonlinear global shallow-

water model. Work in this direction is progressing and

will be reported elsewhere.
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APPENDIX A

2D KL Scheme Reconstruction Details

To evaluate the fluxHi61/2,j, Hi,j61/2 in (8), eight point

values along the cell walls (as indicated in Fig. 2) are

required. The reconstructed point values at eight points

on a single cell (i.e., fE, W, N, S, SE, SW, NE, NWg)
can be obtained by the following:

UE
ij 5C11C21C41C91C12,

UW
ij 5C12C21C42C91C12,

US
ij 5C11C31C51C101C13,

UN
ij 5C12C31C52C101C13,

UNE
ij 5UE

ij 1C31C51C61C71C81C101C111C13,

USE
ij 5UE

ij 2C31C52C62C71C82C101C111C13,

UNW
ij 5UW

ij 1C31C52C61C72C81C101C111C13,

UNE
ij 5UW

ij 2C31C51C61C72C82C101C111C13 .

(A1)

The details of the auxiliary quantities Ci are given as

follows:

C15(7084Uij2368s
xy
1 Uij127s

xy
1 Uij110sdUij)/5760,

C25(36Dx
1Uij25Dx

2Uij2Dx
1Uij112Dx

1Uij21)/96,

C35(36D
y
1Uij25D

y
2Uij2D

y
1Ui11j2D

y
1Ui21j)/96,

C45(38sx
1Uij23sx

2Uij12s
y
1Uij2sDUij270Uij)/192,

C55(38s
y
1Uij23s

y
2Uij12sx

1Uij2sDUij270Uij)/192,

C65(Dx
1Uij112Dx

1Uij21)/16,

C75(D
y
1Ui11j2D

y
1Ui21j22Dx

1Uij)/32,

C85(Dx
1Uij112Dx

1Uij2122Dx
1Uij)/32,

C95(Dx
2Uij22Dx

1Uij)/96,

C105(D
y
2Uij22D

y
1Uij)/96,

C115(4Uij22s
xy
1 Uij1sdUij)/64,

C125(6Uij24sx
1Uij1sx

2Uij)/384,

C135(6Uij24s
y
1Uij1s

y
2Uij)/384.

The discrete operators are given as

sx
1Uij 5Ui21j 1Ui11j, sx

2Uij 5Ui22j 1Ui12j,

s
y
1Uij 5Uij211Uij11, s

y
2Uij 5Uij221Uij12,

s
xy
1 Uij 5sx

1Uij 1s
y
1Uij, s

xy
2 Uij 5sx

2Uij 1s
y
2Uij,

Dx
1Uij 5Ui11j 2Ui21j, Dx

2Uij 5Ui12j 2Ui22j,

D
y
1Uij 5Uij112Uij21, D

y
2Uij 5Uij122Uij22,

sdUij 5Ui21j211Ui11j111Ui11j211Ui21j11 .

APPENDIX B

Constants for the SSP-RK(5,4) Scheme

The following are the values of the constants required

by the SSP-RK(5,4) scheme:

a10 5 1:0 a20 5 0:444 370 494 067 34

a21 5 0:555 629 505 932 66 a30 5 0:620 101 851 385 40

a32 5 0:379 898 148 614 60 a40 5 0:178 079 954 107 73

a43 5 0:821 920 045 892 27 a50 5 0:006 833 258 840 39

a52 5 0:517 231 672 089 78 a53 5 0:127 598 311 332 88

a54 5 0:348 336 757 736 94 b10 5 0:391 752 227 003 92

b21 5 0:368 410 592 629 59 b32 5 0:251 891 774 247 38

b43 5 0:544 974 750 212 37 b53 5 0:084 604 163 382 12

b54 5 0:226 007 483 193 95 a31,41,42,51 5 0:0

b20,30,31,40,41,42,50,51,52 5 0:0.
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