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a b s t r a c t

A new atmospheric general circulation model (dynamical core) based on the discontinuous Galerkin (DG)
method is developed. This model is conservative, high-order accurate and has been integrated into the
NCAR’s high-order method modeling environment (HOMME) to leverage scalable parallel computing
capability to thousands of processors. The computational domain for this 3-D hydrostatic model is a
cubed-sphere with curvilinear coordinates; the governing equations are cast in flux-form. The horizontal
DG discretization employs a high-order nodal basis set of orthogonal Lagrange–Legendre polynomials
and fluxes of inter-element boundaries are approximated with Lax–Friedrichs numerical flux. The vertical
discretization follows the 1-D vertical Lagrangian coordinates approach combined with the cell-inte-
grated semi-Lagrangian conservative remapping procedure. Time integration follows the third-order
strong stability preserving explicit Runge–Kutta scheme. The domain decomposition is applied through
space-filling curve approach. To validate the 3-D DG model in HOMME framework, a baroclinic instability
test is used and the results are compared with those from the established models. Parallel performance is
evaluated on IBM Blue Gene/L supercomputers.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric general circulation modeling (AGCM) has been
going through radical changes over the past decade. There have
been several efforts to develop new dynamical cores (a basic
component of AGCM that describes the general circulation
governed by adiabatic processes at resolved scales [33]) which rely
on advanced numerical methods and non-conventional spherical
grid systems. The primary reason for this trend is to exploit the
enormous computing potential of the massively-parallel petascale
systems that will dominate future high-performance computing
(HPC). The discretization schemes for these new generation models
are based on ‘‘local” methods such as finite-volume or spectral-ele-
ment methods, and employing spherical grid system such as the
geodesic or cubed-sphere grid that is free from singularities
[10,24,31,34]. These features are the essential ingredients for any
new dynamical core with horizontal resolution of the order of a
few kilometers and capable of scaling to several thousands of
processors.

To meet the challenges of building a new generation AGCM, the
National Center for Atmospheric Research (NCAR) has developed a
ll rights reserved.

r), Hae-Won.Choi@nasa.gov
computationally efficient and scalable atmospheric modeling
framework known as the high-order method modeling environ-
ment (HOMME) [9]. HOMME primarily employs the spectral
element (SE) method on a cubed-sphere [25] tiled with quadrilat-
eral elements and it can be configured to solve the global shallow
water [30] or the hydrostatic primitive equations [18,31]. More-
over, the shallow water version has adaptive mesh refinement
capability [28]. Recently, the HOMME spectral element dynamical
core has been shown to efficiently scale to 32,768 processors of an
IBM Blue Gene/L (BG/L) system [2].

However, for climate and atmospheric applications, conserva-
tion of integral invariants such as mass and total energy is of
significant importance, and for that the hydrostatic primitive equa-
tions should be cast in flux form. A major limitation of the current
SE atmospheric model is that it is not inherently conservative, and
local (element-wise) conservation is not obvious. In order to
resolve conservation issues, we have included the discontinuous
Galerkin (DG) shallow water model [22,21] to support the HOMME
framework [8]. Recently, the DG 2-D shallow water model-
extended to a baroclinic model based on 3-D hydrostatic primitive
equations in flux form [3,23]. This paper details the computational
aspects of the DG baroclinic model in the HOMME framework.

The major motivations for choosing a DG baroclinic model as
the conservative option in HOMME are the following. The DG
method [4,6], which is a hybrid technique combining the finite
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element and finite volume methods, is inherently conservative and
shares the same computational advantages as the SE method such
as scalability, high-order accuracy, spectral convergence, and thus
is a potential candidate for climate modeling. Besides, the element-
based HOMME grid system is well-suited for implementing the
high-order DG method. Parallelization in HOMME is effected
through a hybrid MPI/OpenMP design and domain decomposition
through the space-filling curve approach which is again amenable
to DG implementation as demonstrated in [8]. Our contribution
here is the application of known DG techniques to a large and com-
plex problem.

The remainder of the paper is organized as follows: Section 2
describes the HOMME grid system and horizontal and vertical dis-
cretization of the 3-D model. The DG model is evaluated using a
baroclinic instability test and results are compared with standard
models in Section 3. Parallel implementation and performance
are discussed in Section 4, followed by conclusions.

2. The 3-D discontinuous Galerkin model

Here we describe the development of a baroclinic DG model in
the HOMME framework [3,23]. The governing equations are cast in
flux form over the cubed-sphere with non-orthogonal curvilinear
coordinates. This formulation enables the applications of conserva-
tion laws, a basic requirement for the system to be conservative.
The vertical component of the 3-D atmosphere is treated with
Lagrangian coordinates which results in a finite number of multi-
layer horizontal Lagrangian surfaces where the DG discretization
are performed.

2.1. The HOMME grid system

The HOMME grid system is based on the cubed-sphere geome-
try [22,25], where the sphere (globe) is decomposed into six iden-
tical regions by an equiangular central (gnomonic) projection of
the faces of an inscribed cube (Fig. 1). This results in a nonorthog-
onal curvilinear ðx1; x2Þ coordinate system free of singularities for
each face of the cubed-sphere, such that x1; x2 2 ½�p=4; p=4�. Each
face of the cubed sphere is partitioned into Ne � Ne rectangular
non-overlapping elements so that the total number of elements
spanning the surface of the sphere Nelem ¼ 6� N2

e .
The metric tensor Gij associated with the transformation

between the regular longitude–latitude ðk; hÞ sphere with radius
R, and the cubed-sphere with curvilinear coordinates ðx1; x2Þ is
defined as follows [22]:

Gij ¼ AT A; A ¼ R cos hok=ox1 R cos hok=ox2

Roh=ox1 Roh=ox2

" #
: ð1Þ
Fig. 1. The left panel shows a cubed-sphere grid tiled with Ne ¼ 5 elements so that the tot
grid where each of the elements is mapped onto a Nv � Nv Gauss–Lobatto–Legendre (GLL
quadrature points ðNv ¼ 8Þ defined in the reference element ½�1;1� � ½�1;1�.
The matrix A is used for transforming the spherical velocity vec-
tor ðu; vÞ to the covariant ðu1; u2Þ and contravariant ðu1;u2Þ velocity
vectors such that

u
v

� �
¼ A

u1

u2

" #
; ui ¼ Gijuj; ui ¼ Gijuj; Gij ¼ ðGijÞ�1

: ð2Þ

Note that the transformations (2) are free of singularities and
the metric term G ¼ detðGijÞ is identical for all cube faces.

2.2. Hydrostatic primitive equations on the cubed-sphere

A major feature of the baroclinic DG model is the 1D vertical
Lagrangian coordinates [17,19,29]. The horizontal layers or sur-
faces of the atmosphere are treated as material (Lagrangian) sur-
faces in the vertical direction and free to move up or down with
respect to a reference 1D vertical (Eulerian) coordinate as the time
evolves. Over time, the Lagrangian surfaces deform and thus must
be periodically remapped onto the reference coordinates. As a
result the primitive equations can be recast in a conservative form
without the vertical advection terms.

The prognostic variables are pressure thickness dp, covariant
wind vectors ðu1;u2Þ, potential temperature H, and moisture q.
The flux form hydrostatic primitive equations, consisting of the
momentum, mass continuity, thermodynamic, and moisture trans-
port equations, can be expressed in curvilinear coordinates as
follows [3,23]:

ou1

ot
þrc � E1 ¼

ffiffiffiffi
G
p

u2ðf þ fÞ � RdT
o

ox1 ðln pÞ; ð3Þ
ou2

ot
þrc � E2 ¼ �

ffiffiffiffi
G
p

u1ðf þ fÞ � RdT
o

ox2 ðln pÞ; ð4Þ
o

ot
ðDpÞ þ rc � ðUjDpÞ ¼ 0; ð5Þ

o

ot
ðHDpÞ þ rc � ðUjHDpÞ ¼ 0; ð6Þ

o

ot
ðqDpÞ þ rc � ðUjqDpÞ ¼ 0; ð7Þ

where

rc �
o

ox1 ;
o

ox2

� �
; E1 ¼ ðE;0Þ; E2 ¼ ð0;EÞ; E¼ Uþ 1

2
ðu1u1 þ u2u2Þ;

Uj ¼ ðu1;u2Þ; Dp¼
ffiffiffiffi
G
p

dp; H¼ Tðp0=pÞj; j¼ Rd=Cp;

where T is the temperature, E is the energy term, f is the relative
vorticity [21], U ¼ gh is the geopotential and f is the Coriolis param-
eter; p0 is a standard pressure, Rd is the gas constant and Cp is the
specific heat at constant pressure. In order to close the system of
Eqs. (3)–(7), we consider the hydrostatic equation as given in [1],
(8x8)

ξ
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al number of elements Nelem ¼ 6� 5� 5. The central panel shows the computational
) grid. The right panel shows the structure of the corresponding GLL grid with 8� 8
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dU ¼ �CpHdP; ð8Þ

where P ¼ ðp=p0Þ
j is the Exner function.

2.3. Horizontal DG discretization

Here we adopt the established DG methods for the horizontal
discretization of the baroclinic model. Since the vertical advection
terms are absent in the continuous equations, the entire 3-D sys-
tem can be treated as a vertically stacked shallow water (2-D)
DG models [21], where the vertical levels are coupled only through
the hydrostatic relation (8). Horizontal aspects of the discretization
of the baroclinic model is very similar to that of the SW model,
therefore, here we briefly outline the procedure. Details of the
DG discretization of SW model as well as conservation laws on
the cubed-sphere are given in [8,16,21].

The flux form of Eq. (3)–(7) can be written in the following com-
pact form:

o

ot
Uþrc � FðUÞ ¼ SðUÞ; ð9Þ

where U ¼ ½u1;u2;Dp;DpH;Dpq�T denotes prognostic variables (state
variable vector), F(U) is flux function, and S(U) is the source term.

The computational domain S is the surface of the cubed-
sphere, tiled with Nelem rectangular elements ðXmÞ such that
S ¼ [Nelem

m¼1 Xm. Since the DG spatial discretization considered here
is the same for every element on S, it is only necessary to discuss
the discretization for a generic element X with the boundary oX.

Let Uh be an approximate solution of (9) and uh a test function,
both defined in a finite dimensional vector space VhðXÞ. Then the
weak form of (9) can be formulated by integration by parts [6] such
that

o

ot

Z
X

UhuhdX�
Z

X
FðUhÞ � rcuhdXþ

I
oX

FðUhÞ � nuhdl

¼
Z

Xk

SðUhÞuhdX; ð10Þ

where n is the unit outward-facing normal vector on the boundary
oX. Note that the solution Uh at the boundary is discontinuous, and
this issue is resolved by employing an approximate Riemann solver
for the flux term ‘FðUhÞ � n’ in (10). A Riemann solver essentially
replaces the analytic flux FðhÞ � n by a numerical flux bFðU�h ;Uþh Þ.
The numerical flux provides the only mechanism by which adjacent
elements interact. The flux computation is local to the element
boundaries, and which has an important role in the parallel
communication (MPI) between adjacent elements.

A variety of approximate Riemann solvers are available with
varying complexity [32], however, for our application the Lax–
Friedrichs numerical flux formulas found to an excellent choice
in terms of its efficiency and accuracy [21,8]. The Lax–Friedrichs
formula is given by

bFðU�h ;Uþh Þ ¼ 1
2
½ðFðU�h Þ þ FðUþh ÞÞ � n� aðUþh � U�h Þ�; ð11Þ

where U�h and Uþh are the left and right limits of the discontinuous
function Uh evaluated at the element interface, a is the upper bound
for the absolute value of eigenvalues of the flux Jacobian F0ðUÞ in the
direction n. In many ways the system (3)–(7) behaves like a multi-
layer shallow water system. However, for the shallow water system
on the cubed-sphere, the local maximum values of a in x1 and
x2-directions for each element X are defined by a1 ¼max
ju1j þ

ffiffiffiffiffiffiffiffiffiffiffi
UG11

p� �
and a2 ¼ maxðju2j þ

ffiffiffiffiffiffiffiffiffiffiffi
UG22

p
Þ, respectively (see, Nair

et al. [21]). The baroclinic model is solved for finite number of ver-
tical layers and a is computed for each layer as needed in (11).

An important aspect of the DG discretization is the choice of an
appropriate set of basis functions (polynomials) that span Vh. In
order to evaluate the integrals in (10) efficiently and accurately,
orthogonal polynomial based basis set is usually employed. Re-
cently, Levy et al. [16] compared the efficiency of high-order nodal
and modal basis functions (Legendre polynomial) for DG formula-
tion, and showed that nodal version is computationally far more
efficient than the modal version while both methods produce al-
most equivalent solutions. For the present study, we adopt the no-
dal basis set for the DG discretization as described in [8].

The nodal basis set is constructed using Lagrange–Legendre
polynomials h‘ðnÞ; n 2 ½�1;1�, with roots at the Gauss–Lobatto
quadrature points. The basis functions are defined by

h‘ðnÞ ¼
ðn� 1Þðnþ 1ÞL0NðnÞ

NðN þ 1ÞLNðn‘Þðn� n‘Þ
; ð12Þ

where LNðnÞ is the Legendre polynomial of degree N. In order to take
the advantage of efficient quadrature rules, new independent vari-
ables n1 ¼ n1ðx1Þ and n2 ¼ n2ðx2Þ are introduced in such a way that
n1; n2 2 ½�1;1�.

The high-order accuracy of the HOMME spectral element grids
is directly related to the Gauss–Lobatto–Legendre (GLL) quadrature
points. For a given order of accuracy ðNvÞ of the SE scheme, every
element in the computational domain is mapped onto the unique
GLL grid, is often referred to as the reference element, bounded
by ½�1;1� � ½�1;1� with Nv � Nv GLL grid points. In Fig. 1, central
and right panels show the computational domain with
Nelem ¼ 216 elements and the GLL grid with Nv ¼ 8, respectively.
The DG baroclinic model exploit this grid structure and built onto
the HOMME framework [23].

The approximate solution Uh belongs to the finite dimensional
space VhðXÞ expanded in terms of a tensor-product of the La-
grange basis functions defined at the GLL points such that

Uhðn1; n2Þ ¼
XNv

i¼1

XNv

‘¼1

Uhðn1
i ; n

2
‘ Þhiðn1Þh‘ðn2Þ: ð13Þ

The test function uh also follows the same representation. By
substituting the expansion (13) for Uh and uh in the weak formula-
tion (10), exploiting the orthogonality of the polynomials, simplifi-
cations leads to the following system of ordinary differential
equations [8,21]:

dUh

dt
¼ LðUhÞ; Uh 2 ð0; sÞ � X: ð14Þ

The above ODE can be solved with an explicit time integration
strategy such as the third-order strong stability preserving Run-
ge–Kutta (SSP-RK) scheme by Gottlieb et al. [11]:

Uð1Þh ¼ Un
h þ DtLðUn

hÞ;

Uð2Þh ¼
3
4

Un
h þ

1
4

Uð1Þh þ DtLðUð1Þh Þ
h i

;

Unþ1
h ¼ 1

3
Un

h þ
2
3

Uð2Þh þ DtLðUð2Þh Þ
h i

;

ð15Þ

where the superscripts n and nþ 1 denote time levels t and t þ Dt,
respectively. The above three-stage explicit R–K scheme is robust
and popularly used for DG methods [5,6]. Currently, the DG baro-
clinic model employs SSP-RK (15) for time integration. Unfortu-
nately this scheme is very time-step restrictive and therefore it
may not be efficient for very long term climate-scale integration.
Development of efficient time integration scheme is ongoing
research.

2.4. Vertical discretization

The Lagrangian vertical coordinate was first introduced by Starr
[29] in the early days of atmospheric modeling. Recently, Lin [17]
reintroduced the ‘‘vertically Lagrangian” coordinates in finite-vol-
ume (based on a piecewise parabolic method) dynamical core
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Fig. 3. A schematic showing 3-D grid structure for the DG baroclinic model for a DG
element. The pressure ðpÞ and geopotential ðUÞ are staggered with respect to the
prognostic variables such as the pressure thickness ðdpÞ, velocity components and
potential temperature.
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and demonstrated its application with practical climate simula-
tions [7]. The ‘‘control-volume approach” employed in [17] for
the pressure gradient terms avoids the explicit usage of these
terms in the momentum equations. However in the DG formula-
tion, such an approach is not consistent with the high-order hori-
zontal DG discretization and the pressure gradient terms are
required in the momentum Eqs. (3) and (4) as used in [29].

The vertical discretization based on the 1-D vertical Lagrangian
coordinates of [29] follows evolve and remap approach. Fig. 2 shows
the schematic illustration of the vertical Lagrangian coordinates,
where the smooth curves represent the Lagrangian surfaces and
dashed lines indicate the corresponding Eulerian reference sur-
faces. At initial time Lagrangian surfaces coincide with the refer-
ence surfaces, however, as time evolves the Lagrangian surface
are free to move up or down with respect to the reference layers.
A terrain following Lagrangian vertical coordinate can be con-
structed by treating any reference Eulerian coordinate as a material
surface. For the present study we employ the terrain following
‘eta’-coordinates g ¼ gðp; psÞ [27], which is a hybrid of pressure
and normalized pressure coordinates r ¼ p=ps (where ps is the sur-
face pressure), as the vertical reference coordinates.

Over time, the Lagrangian vertical coordinates deforms and
must be periodically remapped onto a reference coordinate. The
hydrostatic atmosphere is vertically divided into a finite number
of ðNlevÞ pressure intervals or pressure thicknesses. The pressure
thickness dpk is defined as difference between the pressure inter-
faces such that dpk ¼ pkþ1=2 � pk�1=2, where the suffix ‘k� 1=2’ de-
notes the interfaces (half-levels) and staggered with respect to
the full-level k as shown in Fig. 2.

The state variables Uk ¼ ½u1;u2;Dp;DpH;Dpq�Tk are predicted at
the full-levels (dotted line in Fig. 2) for k ¼ 1;2; . . . ;Nlev. With these
notations, pressure at the top of the atmosphere is ptop ¼ p�1=2, the
surface pressure is given by ps ¼ pNlevþ1=2 ¼ ptop þ

PNlev
1 dpk, and the

surface geopotential (includes topography) Us ¼ UNlevþ1=2. Fig. 3
schematically shows the vertical staggering of the variables, for
an element with 5� 5 GLL grid points.

At every time step dpk is predicted at model levels
k ¼ 1;2; . . . ;Nlev and then used to determine the pressure at the
interfaces ðk� 1=2Þ by summing the pressure thickness from top
ðptopÞ to the layer in question:
Fig. 2. Schematic diagram showing the vertical Lagrangian surfaces. The thick s-
mooth curves show the Lagrangian surfaces (interfaces) which are free to move in
the vertical direction as function of time. The dashed lines are the corresponding
Eulerian reference (static) lines. The dotted line shows a typical level (full-level k),
bounded by the interfaces (half-levels) k� 1=2 and kþ 1=2, where the prognostic
variables are predicted.
pkþ1=2 ¼ ptop þ
Xk

‘¼1

dp‘; k ¼ 1;2; . . . ;Nlev: ð16Þ

The geopotential at the interfaces is obtained by using the dis-
cretized hydrostatic relation (8), dUk ¼ �CpHkdPk, and summing
the geopotential height from bottom ðUsÞ to top, i.e.,

Uk�1=2 ¼ Us þ
Xk

‘¼Nlev

dU‘; k ¼ Nlev; Nlev � 1; . . . ;1: ð17Þ

The discretized momentum equations require p and U at full-
levels, and they are interpolated from corresponding values given
at half-levels by Eqs. (16) and (17) using a method described in
[27]. Note that ptop and Us serve as the top and bottom (surface)
boundary conditions, respectively, for the vertical discretization.

2.5. Conservative vertical remapping

For the baroclinic model, the velocity fields ðu1;u2Þ, the mois-
ture q, and total energy ðCEÞ are remapped onto the reference
Eulerian coordinates using the 1-D conservative cell integrated
semi-Lagrangian (CISL) method of Nair and Machenhauer [20].
The temperature field H is retrieved from the remapped total
energy CE as discussed in [17]. The vertical remapping process is
described as below, which requires a reference 1-D grid. A variety
of vertical coordinates systems are available for remapping, how-
ever, we choose the hybrid pressure coordinate g ¼ gðp; psÞ as the
reference coordinate [27]. The values g monotonically increases
form the top ðgtopÞ of the atmosphere to the earth’s surface level
ðgs ¼ 1Þ, as shown in Fig. 4.

Consider a 1-D vertical domain I � ½gtop; gs� spanned by two
monotonic grid lines, gL

k�1=2 and gE
k�1=2, where k ¼ 1;2; . . . ;Nlev þ 1,

representing Lagrangian (source) and Eulerian (target) grids,
respectively. There exist a one-to-one correspondence between
the grid points on these two grids. The grid spacing is defined by
dwL

k ¼ gL
kþ1=2 � gL

k�1=2 and dgE
k ¼ gE

kþ1=2 � gE
k�1=2, for k ¼ 1;2; . . . ;Nlev,

such that jgs � gtopj ¼
P

kdg
L
k ¼

P
kdg

E
k.

Let wðgÞ be a generic density function for g 2 I, representing any
of the variables to be remapped. By remapping we transfer the
average values of wðgLÞ defined in the Lagrangian grid to that of
wðgEÞ in the Eulerian grid with mass conservation as a constraint.
Fig. 4 schematically depicts the vertical Lagrangian and Eulerian
grids over the interval ½gtop; gs�, and the relative positions of the grid



Fig. 4. Schematic of the vertical remapping based on a 1-D Eulerian reference co-
ordinate g 2 ½gtop; gs�. Both Lagrangian (short lines) and Eulerian coordinates (filled
circles) exactly span the domain with gtop and gs as common points. The supersc-
ripts ‘L’ and ‘E’ indicate Lagrangian and Eulerian coordinate variables, respectively.
wkðgÞ is the average density of a field wðgÞ (variable to be remapped) defined in the
cell ½gk�1=2; gkþ1=2�. The values from the Lagrangian grid is remapped onto the Eul-
erian grid.
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points. At a given time, the cell-averaged values wðgLÞ at the
Lagrangian cells are known. From which the average values in
the Eulerian cells is computed. We follow the ‘‘accumulated mass”
approach as used in finite-volume based remapping schemes
[15,20].

The cell averaged density in the Lagrangian cell for
g 2 ½gL

k�1=2; g
L
kþ1=2� is formally defined to be

wkðgLÞ ¼ 1
dgL

k

Z gL
kþ1=2

gL
k�1=2

wðgÞdg: ð18Þ

The mass in an Eulerian (target) grid cell for g 2 ½gE
k�1=2; g

E
kþ1=2� is

given by

wkðgEÞdgE
k ¼

Z gE
kþ1=2

gE
k�1=2

wðgÞdg ¼
Z gE

kþ1=2

gtop

wðgÞdg�
Z gE

k�1=2

gtop

wðgÞdg: ð19Þ

Above equation indicates that the mass in the Eulerian cells can
be represented as the differences of the accumulated masses from
a common reference point gtop. Moreover, the accumulated mass
can be expressed in terms of the Lagrangian (source) grid variable
as follows:Z gE

k�1=2

gtop

wðgÞdg ¼
X‘
m¼1

wmðgLÞdgL
m þ

Z gE
k�1=2

gL
‘

wðgÞdg; ð20Þ

where gL
‘ 2 ½gE

k�3=2; g
E
k�1=2�, and gL

1 � gtop. In Eq. (20), the summation is
a known quantity, while the right-hand side integral is evaluated
analytically [20]. The cell-averaged density field wkðgEÞ at any Eule-
rian cell can be determined from (19) by employing (20).

The accuracy and efficiency of the 1D remapping scheme de-
pends on the representation of the density function (or the sub-
grid scale distribution) wðgÞ in the Lagrangian cells. Usually the
sub-grid-scale distribution for w is represented by polynomials,
which may be further modified to be monotonic. For the current
application wðgÞ is defined as piecewise parabolic functions for
the internal cells, but, for the boundary cells piecewise linear func-
tions are employed. A natural question arises with the treatment of
Lagrangian coordinates is how frequent the remapping need to be
performed? Our experience suggests that the remapping frequency
is in general DtOð10Þ, where Dt is the model time step, and this
estimate is consistent with [17].
3. Numerical test

There are only a few idealized test-cases available for evaluating
3-D atmospheric dynamical cores. Most of them rely on the forced
solution obtained by adding strong diffusion or explicit forcing
terms. Typically such test-cases require long-term integrations
for converged solution [12] and hence not suitable for debugging.
The baroclinic wave instability test proposed by Jablonowski and
Williamson [13] fills this gap, and is an excellent tool for debugging
and performing preliminary validation new dynamical cores. The
initial conditions for the test are quasi-realistic and defined by ana-
lytic expressions which are a steady-state solution of the hydro-
static primitive equations. Baroclinic waves are triggered in the
northern hemisphere when using the initial conditions with an
overlaid perturbation. This test may be integrated up to 30 model
days, and has the predictability limit up to approximately 16 days
[13]. We consider this particular test for evaluating the DG dynam-
ical core.

3.1. Initial Conditions

The surface pressure is initially given as ps ¼ 1000 hPa and the
initial spherical wind velocities are defined as follows. We follow
the notations as used in [13], where initial conditions are pre-
scribed in horizontal longitude–latitude ðk;uÞ coordinates and
the vertical coordinate g ¼ gðp; psÞ.

The balanced initial wind velocity ðu; vÞ is given by

uðk;u; gÞ ¼ u0 cos
3
2 gv sin2ð2uÞ; ð21Þ

vðk;u; gÞ ¼ 0; ð22Þ

where u0 ¼ 35 m=s;gv ¼ ðg� g0Þp=2; g0 ¼ 0:252; g 2 ½0;1�. The
characteristic atmospheric temperature profiles are given as

TðgÞ ¼ T0g
RdC

g for gs P g P gt ;

T0g
RdC

g þ DTðgt � gÞ5 for g < gt ;

8<: ð23Þ

where T0 ¼ 288 K; C ¼ 0:005 K=m; Rd ¼ 287 J=kg K;g ¼ 9:806 m=

s2;DT ¼ 4:8� 105 K, and gt ¼ 0:2 is the tropause level. By defining
the following dummy functions:

Ac ¼ �2 sin6 u cos2 uþ 1
3

� �
þ 10

63

� �
; ð24Þ

Bc ¼ aX
8
5

cos3 u sin2 uþ 2
3

� �
� p

4

� �
; ð25Þ

the potential temperature is given as follows:

Hðk;u; gÞ ¼ TðgÞ þ 3
4

gpu0

Rd
sin gv cos

1
2 gv 2u0 cos

3
2 gvAc þ Bc

h i	 
�
Pðk;u; gÞ; ð26Þ

where Pðk;u; gÞ ¼ p
ps

� �j
is the Exner function, a ¼ 6:371229� 106 m

denotes the radius of the earth and X ¼ 7:29212� 10�5 s�1 is the
earth’s angular velocity. The surface geopotential given as

Usðk;uÞ ¼ u0 cos
3
2

p
2
ðgs � g0Þ

h i
u0 cos

3
2

p
2
ðgs � g0Þ

h i
Ac þ Bc

n o
; ð27Þ

where gs ¼ 1.
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The perturbation field required to be added to the zonal wind
field (21) for triggering baroclinic waves is given by

u0ðk;u; gÞ ¼ up exp � r
R

� �2
� �

ð28Þ

with maximum amplitude up ¼ 1 m=s, radius R ¼ a=10 and the
great-circle distance r, which is given by

r ¼ a arccos½sin uc sin uþ cos uc cos u cosðk� kcÞ�; ð29Þ
Fig. 5. Polar stereographic projections of the surface pressure evolution as a result of th
surface pressure (in hPa) after 1 hour, 1 day, 4 days and 6 days, respectively. The simulatio
of 1.6� approximately at the equator. The model employs 26 vertical levels ðNlev ¼ 26Þ.
where ðkc;ucÞ ¼ ðp=9;2p=9Þ is the center of the perturbation geo-
graphically located at (20�E, 40�N).
3.2. The model simulation results

The horizontal resolution of the model is controlled by two
parameters which are number of elements on a face of the
cubed-sphere along any coordinate direction ðNeÞ as well as the
e baroclinic instability over the northern hemisphere [13]. Panels (a)–(d) show the
n is done with the 3-D DG dynamical core at a horizontal resolution ðNe ¼ 8;Nv ¼ 8Þ
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number of 1-D quadrature points on an element ðNvÞ. Several
choices are possible for the horizontal resolution with Ne and Nv

combinations (also known as ‘‘h–p refinement” in SE literature).
For this study we choose 26 full vertical levels ðNlev ¼ 26Þ with
gtop 	 0:002515 (approximately 2.5 hPa) [27]. The remapping fre-
Fig. 6. Orthographic projection of the simulated surface pressure in hPa (top panels) and
using the DG baroclinic model (panels (a) and (c)) and the reference global spectral mode
at the equator. Both models employ 26 vertical levels ðNlev ¼ 26Þ.
quency ðRf Þ is in general DtOð10Þ, for the baroclinic instability test
Rf is set to 18. However, we note that this choice of Rf is not opti-
mal, it is dependent on the horizontal resolution as well as the
forcing; more research is needed in this regard and will be a topic
for future study.
the temperature fields in K at the 850 hPa pressure level (bottom panels) at day 8;
l (panels (b) and (d)). The horizontal resolution of the models are approximately 1.4�



Fig. 7. Simulated surface pressure (hPa) at day 11 for the baroclinic instability test with the DG model (left), the NCAR global spectral model (central) and the FV dynamical
core (right). The horizontal resolution is approximately 0.7� for the DG and global spectral model, while the FV model employs a resolution of 0:5
 � 0:625
 .

Fig. 8. Evolution of the minimum surface pressure for three models as used for the
Fig. 7 up to 16 days of simulations.
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Since our primary focus here is the computational aspects of DG
baroclinic model, we exclude the detailed analysis (including statis-
tics) for the 30 day simulation with various resolutions as recom-
mended in [13]. However, we compare the DG baroclinic model
results with that of the established climate models in the NCAR
Community Atmospheric Model (CAM) framework [7]. The refer-
ence models used are global spectral transform model and a fi-
nite-volume (FV) model, both rely on regular latitude–longitude
global grids. However, the cubed-sphere has a quasi-uniform grid
structure and over the polar regions it has ‘coarse’ resolution as
compared to the latitude–longitude grids, for a given set of grid
points. Moreover, the GLL grid structure of the elements results in
a highly non-uniform computational grid. Because of the inconsis-
tency of the grid resolutions of these two grid systems [15], we com-
pare an average grid resolution at the equator of the cubed-sphere
by using the approximate relation 90
=ðNeðNv � 1ÞÞ, with that of
the regular spherical grid in polar coordinates. Nevertheless, with
this setup the polar regions of the latitude-longitude sphere get
approximately 30% more grid points as opposed to the polar panels
of the cubed-sphere. For visualization, the data from the cubed-
sphere grid are interpolated onto the latitude–longitude grid.

Fig. 5 demonstrates the evolution of surface pressure ðpsÞ as a
result of the triggering of baroclinic waves in the northern hemi-
sphere. Panels (a)–(c) in Fig. 5 show early development of the
cyclogenesis until simulation day 4, where the surface pressure
deviation is less than 2 hPa. The generation of typical gravity wave
perturbations at early hours of integration is visible in panel (b). By
day 4 a well-defined wave train is established, and by days 6–9 a
significant deepening of the highs and lows take place [13]. Panel
(d) of Fig. 5 shows the surface pressure at day 6. Approximate hor-
izontal resolution used for the simulation is 1.6� at the equator, for
that we use the cubed-sphere combination Ne ¼ 8 and Nv ¼ 8.

Fig. 6 shows the simulated pressure and temperature at 850 hPa
pressure surface at day 8 by the DG baroclinic model and the NCAR
global spectral model. At day 8 the baroclinic instability waves in
surface pressure are well developed and the wave patterns in tem-
perature fields are clearly visible. The horizontal resolution of the
NCAR reference model is set to be T85, i.e., 128� 256 latitude–lon-
gitude grid (excluding the pole points) with a horizontal resolution
of 1.4� [13]. To match with this resolution approximately at the
equator, we choose Ne ¼ 12 and Nv ¼ 6 for the DG model. Note that
with this configuration DG model employs fewer number of grid
points as compared to global spectral model. The surface pressure
shown in Fig. 6a by the DG model is smooth and free from spectral
ringing (spurious oscillation) as opposed to the reference model
shown in Fig. 6b. The baroclinic wave patterns over the tempera-
ture fields are well captured by the DG model (Fig. 6c).

The DG model has been tested for convergence by varying Ne or
Nv (for brevity results are not shown). At a resolution of 0.7� with
Ne ¼ 26 and Nv ¼ 6, the solution attains convergence and which is
consistent with the comparison results given in [13]. Fig. 7 shows
the surface pressure at day 11 for the DG model (left panel) and the
reference models (central and right panels). The reference models
used are NCAR global spectral model with resolution T170
(256� 512 grid) and the FV model with horizontal resolution
0:5
 � 0:625
 (361� 576 grid). All these models simulated strik-
ingly similar pressure patterns even though the underlying numer-
ics are entirely different. Fig. 8 shows the evolution of minimum
pressure for 16 days of model simulation by the DG and reference
models (using the same resolution as discussed above). The mini-
mum surface pressure is almost identical until day 9 and this
behavior changes slightly when the baroclinic instability intensi-
fies. The minimum ps for the DG model is more similar to that of
the FV model until day 13. DG results again agree with the refer-
ence solutions.



Table 1
Comparison between co-processor and virtual-node modes of IBM Blue Gene/L
supercomputers

Mode type Coprocessor (CO) Virtual-node (VN)

Clock cycle 0.7 GHz 0.7 GHz
Memory/proc 0.5 GB 0.25 GB
Tasks/node 1 2
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4. Parallel implementation

4.1. Domain decomposition

The salient feature of the cubed-sphere geometry is its grid
structure which provides a quasi-uniform grid spacing over the
sphere. The cubed-sphere face edges are discontinuous, however
they are physically connected by using a set of local transforma-
tions provided in [22]. Fig. 9 shows the topological (logical) con-
nectivity of the six sub-domains which span the cubed-sphere.
Since every sub-domain has the identical square pattern it is rather
easy to tile the entire sphere with rectangular elements as shown
in Fig. 1. In other words, for the cubed-sphere the computational
domain is naturally decomposed into Nelem number of non-overlap-
ping rectangular elements.

The parallel implementation of HOMME is based on a hybrid
MPI/OpenMP approach. HOMME parallel environment is designed
to support the element based methods such as spectral element
and discontinuous Galerkin methods. The natural way to paralle-
lize the element based method is to allocate a chunk of elements
to each processor. Each element only needs information from adja-
cent elements, so the domain decomposition reduces to a standard
graph partitioning problem using algorithm based on either Hilbert
space-filling curve approach by Sagan [26], Dennis et al. [8] or ME-
TIS [14].

The approach generates best partitions when Ne ¼ 2‘3m5n,
where ‘;m, and n are integers. The first step to partitioning the
computing grid involves the mapping of the 2-D surface of the
cubed-sphere into a linear array. Fig. 10 illustrates the Hilbert
space-filling curve and elements when Nelem ¼ 24. Then the second
step involves partitioning the linear array into Pg contiguous
groups, where Pg is the number of MPI tasks. The space-filling
curve partitioning creates contiguous groups of elements and
load-balances the computational and communication costs. For
more detail communication frameworks of HOMME, see [8].
z

4 F2 F3F1

F6

F5
(Top)

F1

(Bottom)

x

yF

Fig. 9. The logical orientation of the six faces (sub-domains) of the cubed-sphere.

End
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Fig. 10. A mapping of a Hilbert space-filling curve for Nelem ¼ 24 cubed-sphere grid.
To perform parallel computing experiments, we employ the
2048 processors of a IBM Blue Gene/L (BG/L) supercomputer at
NCAR. The configuration of these systems is summarized in Table 1.
A Message Passing Interface (MPI) job for IBM BG/L machine can be
run in co-processor mode (i.e., a single MPI task runs on each com-
pute node) or in virtual-node mode (i.e., two MPI tasks are run on
each compute node). To determine sustained MFLOPS per proces-
sor, the number of floating-point operations per time step was
measured for the main DG time stepping loop using hardware per-
formance counters for IBM supercomputer.

� IBM Blue Gene/L system uses libmpihpm library and its link and
code examples are given as follows:
add -L$(BGL_LIBRARY_PATH) -lmpihpm_f -

lbgl_perfctr.rts
. . .

call trace_start()
call dg3d_advance()
call trace_stop()
. . .

4.2. Parallel performance

To assess parallel performance we consider baroclinic instabil-
ity test [13]. Note that all writing and printing functions are turned
off during performance evaluations. Table 2 summarizes the
dynamical core configurations for 3-D model used in parallel per-
formance experiments (note that the R–K time steps used are not
optimal).

Fig. 11 demonstrates parallel performance, where 2048 proces-
sors of a IBM Blue Gene/L machine sustains between 248 and 257
MFLOPS per processor with coprocessor mode and sustains be-
tween 220 and 247 MFLOPS per processor with virtual-node mode
for 1� horizontal resolution (i.e., Nelem ¼ 1944). For 0.5� horizontal
resolution (i.e., Nelem ¼ 7776), 2048 processors of a IBM Blue Gene/
L machine sustains between 249 and 261 MFLOPS per processor
with coprocessor mode and sustains between 232 and 248 MFLOPS
per processor with virtual-node mode. The CPU cost in wall clock
hours is shown in Fig. 12.

Table 3 summaries the percentage of peak performance for
strong scaling results for 2048 processors of a IBM Blue Gene/L sys-
tem. Two thousand and fourty-eight processors of a IBM Blue
Gene/L machine sustains 9.5% and 9.3% of peak performance for
coprocessor and virtual-node modes, respectively.
Table 2
Summary of dynamical core configurations for Baroclinic Instability Test used in 3-D
DGM model on HOMME

Horizontal
resolution

Vertical resolution
ðNlevÞ

Number of elements
ðNelemÞ

Time step
ðDtÞ

1� 26 1944 6 s
0.5� 26 7776 3 s
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Fig. 11. Parallel performance (i.e., strong scaling) results on 2048 processors of a
IBM BG/L supercomputer at NCAR.
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Fig. 12. The CPU cost in wall clock hour as a function of processors on 2048 pro-
cessors of a IBM BG/L supercomputer at NCAR.

Table 3
Summary of strong scaling results for 2048 processors of a IBM BG/L supercomputer
at NCAR

Resource Sustained MFLOPS % of peak performance

1944 elements: 1 task/node (CO) 257 9.2
1944 elements: 2 tasks/node (VN) 247 8.8
7776 elements: 1 task/node (CO) 261 9.3
7776 elements: 2 tasks/node (VN) 248 8.9

318 R.D. Nair et al. / Computers & Fluids 38 (2009) 309–319
5. Conclusion

A conservative high-order discontinuous Galerkin (DG) baro-
clinic model has been developed and implemented in NCAR’s
high-order method modeling environment (HOMME). The 3-D
DG model rely on hydrostatic primitive equations cast in flux-from.
The computational domain is the singularity-free cubed-sphere
geometry. The DG discretization uses high-order nodal basis set
of Lagrange–Legendre polynomials and fluxes of inter-element
boundaries are approximated with Lax–Friedrichs numerical flux.
The vertical discretization follows the 1-D vertical terrain-follow-
ing Lagrangian coordinates approach. Consequently, the 3-D atmo-
sphere is divided into a finite number of Lagrangian 2-D horizontal
surfaces (layers) and DG discretization is performed for each layer.
Over time, the Lagrangian surfaces are subject to deformation, and
therefore the state variables are periodically remapped onto a ref-
erence coordinate. The vertical remapping is performed with the
conservative cell-integrated semi-Lagrangian method.

The time integration of the model rely on the explicit third-or-
der strong-stability preserving Runge–Kutta scheme. The DG
dynamical core is validated using a baroclinic instability test and
results are compared with that of the NCAR global spectral model
and a finite-volume model available in community atmospheric
modeling framework. The DG model successfully simulated baro-
clinic instability growth and the results are comparable with that
of the reference models. Idealized tests show that the new model
simulation is accurate, smooth and free from ‘spectral ringing’
(spurious oscillations) as opposed to the global spectral model.

However, the DG baroclinic model employs explicit Runge–Kut-
ta time integration with moderate time step size resulting in a low-
er integration rate. This may not be adequate for long-term climate
simulations. New time integration schemes for the baroclinic mod-
el is under investigation. This includes semi-implicit, implicit–ex-
plicit Runge–Kutta and the Rosenbrock class of time integrators.
The vertical Lagrangian treatment is an elegant approach by which
the 3D model can be treated as vertically-stacked shallow water
(2D) models. Nevertheless, the remapping frequency used for the
present study is somewhat ad hoc, and more rigorous studies are
required in this regard.

Parallel experiments are tested on 2048 processors of a IBM
Blue Gene/L supercomputer at NCAR. Conservative 3-D DG baro-
clinic model sustains 9.3% peak performance (i.e., 261 MFLOPS/
processor) for IBM Blue Gene/L’s coprocessor mode and sustains
8.9% peak performance (i.e., 248 MFLOPS/processor) for IBM Blue
Gene/L’s virtual-node mode. The preliminary performance study
with DG model is encouraging and comparable to that of the SE
baroclinic model in HOMME. Extending the new DG model to a
fully-fledged climate model with realistic physics packages and
scaling up to Oð100 KÞ processors is our ultimate goal.
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