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Non-Hydrostatic HOMME: Why do we need this?

The High-Order Method Modeling Environment (HOMME) is a petascle capable hydrostatic
dynamical core developed at NCAR and DOE labs. HOMME/SE version is currently used for
climate simulation.

Hydrostatic dynamics is not suitable or valid for horizontal resolution less than 10 KM (1/8◦)
Simulate atmospheric dynamics at ultra high-resolution (global cloud-system resolving model)

Toward exa-scale computing, more accurate climate simulation

Two modeling efforts are under development

Direct extension of HOMME SE (or CAM-SE)
hydrostatic model to a non-hydrostatic model
( ACME: D. Hall & M. Taylor + ...)

Solve the classical fully compressible 3D Euler
system on the cubed-sphere using DG Method

The DG/NH model development in HOMME
framework at NCAR is named as the
High-Order Multiscale Atmopsheric Model
(“HOMAM”)
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HOMAM Development in HOMME Framework

Horizontal Grid system (Cubed-Sphere)

HOMME hydrostatic framework is based on
cubed-sphere geometry (Sadourny, 1972).
Sepctral Element (SE) and discontinuous
Galerkin (DG) methods are used for spatial
discretization

Quasi-uniform rectangular mesh, well suited
for the element-based methods such as DG or
SE methods.

Proven petascale capability (Dennis et al.
2012). Horizontal design (MPI/parallel) is
adopted for the new model.

Vertical Grid system (z-coordinate)

HOMME currently employs pressure-based
η-coordinates in the vertical with FD
discretization

Replace by the terrain-following height-based
vertical z coordinates. Dimension splitting
(2D + 1D) spatial discretization with DG
methods.
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Non-Hydrostatic (NH) Model Development: Basic Design

Atmosphere: 3D Spherical domain (shell)
with the vertical (radial direction) length
scale O(10) km and the horizontal length
scale O(10,000) km.

The dynamics is governed by 3D
compressible Euler/Navier-Stokes system
of equations, based on conservation of
mass, energy, momentum etc.

∂ρ

∂ t
+∇ · (ρV) = 0

∂ρV
∂ t

+∇ · (ρV⊗V) = −∇p′− (ρ−ρ)gk−2ρΩ×V+FM

∂ρθ

∂ t
+∇ · (ρθ V) = 0

∂ρqk

∂ t
+∇ · (ρ qkV) = 0

V = (u,v,w) 3D wind field, ρ air density, p pressure, θ potential temperature, qk moisture
variables, Ω erath’s rotation rate, FM diffusive fluxes and forcring etc.
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Compressible Euler System in Generalized Coordinates

The 3D compressible Euler system of equations on a rotating sphere in generalized
curvilinear coordinates (x1,x2,x3) can be written in tensor form (Warsi, 1992):

∂ρ

∂ t
+

1√
G

[
∂

∂x j (
√

Gρu j)

]
= 0 {Summation Implied}

∂ρui

∂ t
+

1√
G

[
∂

∂x j [
√

G(ρuiu j + pGi j)]

]
+Γ

i
jk(ρu juk + pG jk) = f

√
G(u1 G2i−u2 G1i)−ρgG3i

∂ρθ

∂ t
+

1√
G

[
∂

∂x j (
√

Gρθ u j)

]
= 0

∂ρq
∂ t

+
1√
G

[
∂

∂x j (
√

Gρqu j)

]
= 0

Where ui is contravariant wind field, Gi j metric tensor,
√

G = |Gi j|1/2 is the Jacobian of the
transform, Gi j = (Gi j)

−1, and i, j,k ∈ {1,2,3}. The associated Christoffel symbols (second
kind) are defined as

Γ
i
jk =

1
2

Gil
[

∂Gkl

∂x j +
∂G jl

∂xk −
∂Gk j

∂xl

]
Mathematically elegant but computationally cumbersome!
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Model Equations for the Cubed-Sphere Geometry
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Equiangular central projection

Curvilinear horizontal coordinates (x1,x2)

6 patched domains, x1,x2 ∈ [−π/4,π/4]

“Cartesian-like” computational domains

Shallow (thin) atmosphere approximation makes the the spherical domain as a vertically
stacked cubed-sphere layers.

x3 = radius r+ height z, s.t z� r =⇒ (x1,x2,x3)→ (x1,x2,z)

The metric tensor associated with shallow atmosphere takes a simple form,

Gi j =

 Ĝ11 Ĝ12 0
Ĝ21 Ĝ22 0

0 0 1

 , Ĝi j =
r2

µ4 cos2 x1 cos2 x2

[
1+ tan2 x1 − tanx1 tanx2

− tanx1 tanx2 1+ tan2 x2

]
,

where i, j ∈ {1,2} and µ2 = 1+ tan2 x1 + tan2 x2. Jacobian
√

Gh ≡ |Gi j|1/2 = |Ĝi j|1/2
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HOMAM: Vertical Grid System

Terrain-following height-based vertical z
coordinate.

Multiple options [e.g., Schär (2002),
Klemp (2011), SLEVE]

Vertical coordinate transformation
(Gal-Chen & Somerville, JCP 1975), is
currently adopted.

hs = hs(x1,x2) is the prescribed mountain profile and ztop is the top of the model domain

ζ = ztop
z−hs

ztop−hs
, z(ζ ) = hs(x1,x2)+ζ

ztop−hs

ztop
; hs ≤ z≤ ztop.

The Jacobian associated with the transform (x1,x2,z)→ (x1,x2,ζ ) is

√
Gv =

[
∂ z
∂ζ

]
(x1 ,x2)

= 1− hs(x1,x2)

ztop
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HOMAM: Vertical Coordinate Transform, (x1,x2,z)→ (x1,x2,ζ )

The vertical ‘physical’ velocity w = dz/dt, in (x1,x2,z) system

Vertical velocity in the transformed (x1,x2,ζ ) system is u3 = w̃,

w̃ =
dζ

dt
,
√

Gvw̃ = w+
√

GvG13
v u1 +

√
GvG23

v u2,

where (u1,u2) contravariant wind vectors on the cubed-sphere surface.

Metric coefficients (Clark 1977, JCP)

√
Gv =

[
∂ z
∂ζ

]
(x1 ,x2)

,
√

GvG13
v ≡

[
∂hs

∂x1

]
(z)

(
ζ

ztop
−1
)
,
√

GvG23
v ≡

[
∂hs

∂x2

]
(z)

(
ζ

ztop
−1
)
.

Treating w̃ as a prognostic variable in the vertical momentum equations results in several
Christoffel symbols Γi

jk in the source term — computationally undesirable!

Remedy: Treat w as the prognostic variable [Vinokur (1974), Clark (1977), Satoh (2003)].
To preserve the flux-form, use the following differential transforms:

The spacial derivates for an arbitrary scalar ψ can be written in terms of the transformed
vertical ζ -coordinate as follows:

√
Gv

∂ψ

∂ z
=

∂ψ

∂ζ
,
√

Gv
∂ψ

∂xi =
∂ (
√

Gvψ)

∂xi +
∂ (
√

GvGi3
v ψ)

∂ζ
, i = 1,2.
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HOMAM: Vertical Coordinate Transform

Simplifications lead to logically “Cartesian-like” model equations.

Vertical momentum equation in the familiar (x,y,z) coordinate

∂ (ρw)
∂ t

+
∂ (ρwu)

∂x
+

∂ (ρwv)
∂y

+
∂ [ρww+ p′]

∂ z
=−ρ

′g

The w-Eqn in (x1,x2,ζ ) system takes the following form:

∂ (
√

Gρw)
∂ t

+
∂ (
√

Gρwu1)

∂x1 +
∂ (
√

Gρwu2)

∂x2 +
∂ [
√

Gρww̃+
√

Gh p′]
∂ζ

=−
√

Gρ
′g,

where
√

G =
√

Gh
√

Gv, the product of horizontal and vertical time-independent Jacobins.

The Euler system in (x1,x2,ζ ) coordinates can be written in the following compact (flux)
form,

∂U
∂ t

+
∂F1

∂x1 +
∂F2

∂x2 +
∂F3

∂ζ
= S(U)

where U is the state vector and F1,F2,F3 are the flux functions along the coordinate
direction, and S(U) denote the source vector.

Decompose ρ, θ and p as the sum of a mean-state (.) and perturbation (.)′

such that ρ = ρ +ρ ′, θ = θ +θ ′, p = p+ p′, (ρθ) = ρθ +(ρθ)′.

The mean-state maintains hydrostatic balance d p
dz =−ρg.
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HOMAM: Governing Equations in (x1,x2,ζ ) system

Final form of the ‘perturbed’ Euler system in (x1,x2,ζ ) 3D Cubed-sphere

∂U
∂ t

+
∂F1

∂x1 +
∂F2

∂x2 +
∂F3

∂ζ
= S(U)⇒ ∂U

∂ t
+∇ ·F(U) = S(U)

U =


√

Gρ ′√
Gρu1
√

Gρu2
√

Gρw√
G(ρθ)′

 , F1 =


√

Gρu1
√

G(ρu1u1 + p′G11
h )√

G(ρu2u1 + p′G21
h )√

Gρwu1
√

Gρθu1

 F2 =


√

Gρu2
√

G(ρu1u2 + p′G12
h )√

G(ρu2u2 + p′G22
h )√

Gρwu2
√

Gρθu2



F3 =


√

Gρw̃√
Gρu1w̃+

√
Gh
√

GvG13
v p′√

Gρu2w̃+
√

Gh
√

GvG23
v p′√

Gρww̃+
√

Gh p′√
Gρθ w̃

 , S(U) =
√

G


0√

Gh ρ f (u1G21−u2G11)−M1
Γ√

Gh ρ f (u1G22−u2G12)−M2
Γ

−ρ ′g
0


Note: M1

Γ
,M2

Γ
are geometric terms associated with cubed-sphere topology, they have no

vertical dependence for shallow atmosphere approximation.
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Computational Domain (Horizontal)

k+1

kx
y

z

Ωi,j,k

Dimensional split approach: The computational domain D is decomposed into 2D + 1D.
Independent DG discretization for horizontal (x1,x2) cubed-sphere surfaces, and vertical (ζ )
direction.

Cubed-sphere panel is tiled with non-overlapping Ne×Ne elements, each with Np×Np Gauss
quadrature points. This is a standard setup in HOMME framework.

Horizontal elements are stacked in the vertical direction, which forms the 3D grid system.
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Computational Domain (Vertical)

HOMAM Vertical Grid Structure

hs

Z

x

ζ

x

The vertical grid line z or ζ is partitioned into Vnel 1D elements, each with Ng Gauss points.
This is a major design change in HOMME/CAM framework.

Currently Gauss-Legendre (GL) quadrature elements are used in the vertical, which define
independent vertical levels with optimal accuracy.

Total degrees-of-freedom (dof) is 6N2
e N2

p×VnelNg.

Other possibilities: High-order FV discretization (WENO, Multi-Moment etc.)
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Discontinuous Galerkin (DG) Methods in 2D

DG Method is an ideal candidate for atmospheric model discretization, due to its inherent
conservation proprty, geometric flexibility & parallel efficiency etc.

2D Scalar conservation law:

∂U
∂ t

+∇ ·F(U) = S(U), in (0,T )×D ; ∀(x,ζ ) ∈D ,

where U =U(x,ζ , t), ∇≡ (∂/∂x,∂/∂ζ ), F = (F,G) is the flux function, and S is the source term.

Ω

Ω

Ω Ω

Ω

i,j i+1,ji-1,j

i,j+1

i,j-1

∪Domain D = Ω i,j

Element

The domain D is partitioned into
non-overlapping elements Ωi j

Element edges are discontinuous

Problem is locally solved on each
element Ωi j
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DG-2D Spatial Discretization for an Element Ωe in D

Approximate solution Uh belongs to a vector space Vh of polynomials PN(Ωe).

The Galerkin formulation: Multiplication of the basic equation by a test function ϕh ∈ Vh and
integration over an element Ωe with boundary Γe,∫

Ωe

[
∂Uh

∂ t
+∇ ·F(Uh)−S(Uh)

]
ϕhdΩ = 0

Weak Galerkin formulation : Integration by parts (Green’s theorem) yields:

∂

∂ t

∫
Ωe

Uh ϕh dΩ−
∫

Ωe
F(Uh) · ∇ϕh dΩ +

∫
Γe

F(Uh) ·~nϕh dΓ =
∫

Ωe
S(Uh)ϕhdΩ

The analytic flux F(Uh) ·~n must be replaced by a numerical flux such as the local
Lax-Friedrichs (Rusanov) Flux:

F(Uh) ·~n =
1
2
[
(F(U−h )+F(U+

h )) ·~n−α(U+
h −U−h )

]
.

For the Euler system, α is the upper bound on the absolute value of eigenvalues of the flux
Jacobian F′(U).

α →max{|v−|+ c−, |v+|+ c+},c =
√

γRdT , v± = u± ·~n

αmax = |ui|+ c
√

Gii along xi (horizontal) direction, and αmax = |w|+ c in the z-direction
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DG Method: Nodal Spatial Discretization

Every element Ωe is mapped onto a unique reference element [−1,1]2, with local coordinates
(ξ ,η) ∈ [−1,1].

Construct a nodal basis set using a tensor-product of Lagrange polynomials hi(ξ ), with roots
at Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) quadrature points {ξi}.
The nodal basis set is {hi(ξ )∗h j(η)} with

hi(ξ )|GLL =
(ξ 2−1)P′N(ξ )

N(N +1)PN(ξi)(ξ −ξi)
OR hi(ξ )|GL =

PN+1(ξ )

P′N+1(ξi)(ξ −ξi)

PN(ξ ) is the Nth degree Legendre polynomial.

The approximate solution and test functions are expressed in terms of basis function:

Uh(ξ ,η) =
N

∑
i=0

N

∑
j=0

Ui j hi(ξ )h j(η) for −1≤ ξ ,η ≤ 1

Final form for the discretization leads to a system of ODEs:

∂U
∂ t

+∇ ·F(U) = S(U) ⇒ d
dt

Uh(t) = L (Uh)
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High-Order Nodal Spatial Discretization [GL or GLL ?]

(a) (b) (c)

GLL GL GL/GLL

Pros & Cons

The GL quadrature rule is exact for polynomials of degree up to 2N +1, but the GLL
quadrature rule is exact for polynomials of degree up to 2N−1

For a given d.o.f, the GL quadrature is more accurate as opposed to GLL. For relatively
low-order approximations (N ≤ 4), the GL quadrature is desirable.

GL grid requires an interpolation of solution at the flux points (ξ ,η =±1), additional
computational overhead.

GLL results in inexact integration, but easy to implement and efficient. For high-oder
(N > 5), GLL might be a better choice as the loss of accuracy is not significant.
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DG-2D: Diffusion Process

Local Discontinuous Galerkin (LDG) method

Bassi and Rebay (JCP, 1997) introduced a scheme for treating diffusion (viscuos flux) terms
in DG discretization of the compressible Navier-Stokes equations.

Cockburn & Shu (1998) generalized this approach known as the LDG method.

Consider the following advection-diffusion equation on an element Ω, with known (constant)
diffusion coefficient ν.

∂U
∂ t

+∇ ·F(U) = ν∇
2U

The key idea of LDG approach is the introduction of a local auxiliary variable q = ν∇U , and
rewrite the above problem as a first-order system:

q−ν∇U = 0
∂U
∂ t

+∇ ·F(U)−∇ ·q = 0

A robust approach, however, computationally expensive (uses wider stencil), and prohibitive
for high-order diffusion (hyper-viscosity).

More efficient approach based on Flux Reconstruction method may be desirable (Huynh,
2009).
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The Diffusion Process: LDG method

Multiplying by a vector test function Φ ∈ V d(Ω), and integrating by parts∫
Ω

q ·ΦdΩ = ν

[∫
∂Ω

U∗Φ ·~ndσ −
∫

Ω

U ∇ ·ΦdΩ

]
The weak formulation of advection-diffusion equation obtained using the test function
(ϕ ∈ V (Ω)) and the Lax-Friedrichs flux F̂:

∂

∂ t

∫
Ω

U ϕ dΩ −
∫

Ω

F(U) · ∇ϕ dΩ+
∫

∂Ω

F̂(U) ·~nϕ dσ

+
∫

Ω

q · ∇ϕ dΩ−
∫

∂Ω

q∗ ·~nϕ dσ = 0,

For the LDG method, numerical fluxes U∗, q∗ are defined in terms of jump [·] and central {·}
fluxes:

U∗ = {U}+β · [U ], q∗ = {q}−β [q]−ηk[U ]

{U}= (U++U−)/2, [U ] = (U−−U+)~n; {q}= (q++q−)/2, [q] = (q−−q+) ·~n

The constants β =~n/2 and ηk = 0 for the present application

Robust approach, but computationally expensive (wider stencil), and prohibitive for
hyper-viscosity

Ram Nair (rnair@ucar.edu) Time-Split DG-NH Dycore ICMS: March 23rd, 2015 19 / 41



The Diffusion Process: Flux Reconstruction (FR) method

Introduced by Huynh (2007, 2009). Unified DG, SD, SFV in a single framework.

xi-1/2 x i-1/2

i

i-1
F(x)

F(x)

F(x)

F(x)i

~

i-1

(a) (b)

UU
+

-

ξ ξ

η η

(-1,-1)

(1,1) (1,1)

(-1,-1)

(a)  DG (b)  SD

Differential Form:
∂U
∂ t

+∇ ·F(U) = S(U)

Weak Galerkin Form (SE/DG methods):

∂

∂ t

∫
Ii, j

Uh ϕh ds−
∫

Ii, j
F(Uh) · ∇ϕh ds+

∫
∂ Ii, j

F(Uh) ·~nϕh dΓ =
∫

Ii, j
Sh ϕh ds

Solve the differential form via spectral differencing (SD)

At the element edges, continuity of fluxes are maintained by FR procedure
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The Diffusion Process: Flux Reconstruction (FR) method

For a simple conservation law, with a solution polynomial Ui(x) of degree N

∂Ui

∂ t
+

∂Fi(x)
∂x

= 0 on I = [xi−1/2,xi+1/2]

Reconstructed new flux,

F̃i(x) = Fi(x)+ [F̂i−1/2−F(xi−1/2)]GL(x)+ [F̂i+1/2−F(xi+1/2)]GR(x),

where GL and GR are the left and right correction functions (Radau polynomials) of degree
N +1.

DG or SD methods can be recovered by choosing suitable GL,GR (Huynh, 2007):

∂Ui,k

∂ t
+

∂Fi,k

∂x
+[F̂i−1/2−F(xi−1/2)]G

′
L(xi,k)+ [F̂i+1/2−F(xi+1/2)]G

′
R(xi,k) = 0,

For diffusion problem: Ut =Uxx

Find the common value at the interface Ûi+1/2 = (U−j+1/2 +U+
j+1/2)/2

Find the common derivative the cell interface xi+1/2, using FR procedure on elements Ii, Ii+1

[Ux]
com
i+1/2 = ([UR

i ]x +[UL
i+1]x)/2. Find the second derivative Uxx.

The process requires only 3-element wide stencil (Ii−1, Ii, Ii+1); i.e., one parallel
communication.
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The Diffusion Process: Flux Reconstruction (FR) method

Evolution of vorticity for SW Test-case5 at Day 10 (Williamson, 1992)

Nodal viscous SW model, GLL grid with 6 points. FR can be implemented on existing
DG/GLL stencils (quadrature-free implementation)

About 20% more computational efficiency for viscous SW model [Nair (MWR, 2015)]

Adopting FR philosophy ⇒ “Goodbye” to Volume/Surface/Line integrals in DG formulation!
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Time Stepping Challenges for the ODE system

For the resulting ODE systems:
dUh

dt
= L(Uh), t ∈ (0, tT )

where L is the DG spatial discretization operator.

Options & Challenges

Explicit time integration efficient and easy to implement.
Stringent CFL constraint ⇒ tiny ∆t, limited practical value.

C∆t
h̄

<
1

2N +1

1 C = max{|u|+ c, |w|+ c}, c =
√

γRd T , dominated by fast moving acoustic waves and gravity wave.
2 Minimum grid spacing h̄ = min{∆x,∆z}, where ∆z� ∆x.
3 PN -DG, choose N = {2,3,4}, moderate order.
4 Strong Stability-Preserving (SSP)-RK.

Implicit time integration, unconditionally stable but generally expensive to solve. Overall
efficiency at a global scale is not known.

Semi-implicit time integration
Implicit solver for Linear part and explicit solver for nonlinear parts. Needs efficient Helmholtz
solver.
HEVI: horizontal explicit and vertical implicit.
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DG-NH Time Stepping-HEVI

For the resulting ODE system

dUh

dt
= L(Uh), with

C∆t
h̄

<
1

2N +1

To overcome h̄ = min{∆x,∆z}, treat the vertical time discretization (z-direction) in an implicit
manner.

Benefit: The effective Courant number is only limited by the minimum horizontal
grid-spacing min{∆x,∆y}.
Bonus: The HOMME hydrostatic dynamical core relies on explicit time-stepping with
excellent parallel scalability (O(105) processors). The ‘HEVI’ split approach might retain its
parallel efficiency for NH equations too.

Horizontal part and vertical part connected by Strang-type time splitting, permitting O(∆t2)
accuracy.

Remarks of HEVI:
Particularly useful for 3D NH modeling (∆z : ∆x = 1 : 1000).
Global NH models adopt the HEVI philosophy, NICAM1, MPAS2 etc.
Recent high-order FV-NH3 models based on operator-split method.

1Satoh et al. 2008
2Skamarock et al. 2012
3Norman et al. (JCP, 2011), Ulrich et al. (MWR, 2012)
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DG-NH Time Stepping with HEVI (Strang-type Split)

Solve the ODE dU/dt = L(U) system, where U = (
√

Gρ ′,
√

Gρu1,ρu2,
√

Gρw,
√

G(ρθ)′)T .

The spatial DG discretization corresponding to L(U) is split into horizontal (H) and vertical
(V ) components, s.t. L(U) = LH(U)+LV (U)

U1 := Uh(t),
d
dt

U1 = LH(U1) in (t, t +∆t/2]

U2 := U1(t +∆t/2),
d
dt

U2 = LV (U2) in (t, t +∆t],

U3 := U2(t +∆t),
d
dt

U3 = LH(U3) in (t +∆t/2, t +∆t],

and Uh(t +∆t) = U3(t +∆t).

Possible options are is to perform “H−V −H” sequence of operations and “V −H−V ”
sequence.

The vertical part may be solved implicitly with DIRK (Diagonally Implicit Runge-Kutta) 4.

HEVI may be viewed as an IMEX Runge-Kutta (RK) method (Giraldo et al. 2009)

For the implicit solver:
inner linear solver uses Jacobian-Free GMRES.
It usually takes 1 or 2 iterations for the outer Newton solver.

4Durran, 2010
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HOMAM: 3D Advection DCMIP Benchmark Tests

The transport equation in flux-from for a tracer variable q in 3D (x1,x2,z) coordinates can be
written as

∂ρq
∂ t

+
1√
Gh

[
∂

∂x1 (
√

Ghρqu1)+
∂

∂x2 (
√

Ghρqu2)+
∂

∂ z
(
√

Ghρqw)
]
= 0

In computational ζ -coordinate this reduces to

∂ψ

∂ t
+

∂ (ψu1)

∂x1 +
∂ (ψu2)

∂x2 =− ∂ (ψw̃)
∂ζ

,

where the pseudo density ψ =
√

Gρq, and
√

G =
√

Gh
√

Gv, is the “composite” Jacobian
which combines the time-independent horizontal (

√
Gh) and the vertical (

√
Gv) metric terms.

ρq is the conservative variable and w̃ = dζ/dt is the vertical velocity due to the coordinate
transformation.

DCMIP: https://earthsystemcog.org/projects/dcmip-2012/,
Kent et al. (2014, QJRMS)
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3D Advection Test: “Hadley-like” Meridional Circulation

DCMIP-12: A deformational flow
that mimics a “Hadley-like”
meridional circulation.

The wind fields are designed so that
the flow reverses itself halfway
through the simulation and returns
the tracers to their initial position.

The exact solution is known at the
end of the run (1 day).

HOMAM setup for 1◦ L60:
Ne = 30, Np = 4 (GLL);
Vnel = 15; Ng = 4 (GL),
∆t = 60 s, 1 day simulation.

HEVI, HEVE and Full (un-split) produce visually identical results.
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3D Advection DCMIP-12 Test: Convergence

Vertical Levels (# of grid points)
36 60 120

L 2 e
rro

r n
or

m

10-3

10-2

10-1

100 Hadley test-case: Normalized errors
HEVI
HEVE
FULL
O(2)
O(3)

Horiz. resolution (degree)
0.512

L 2 e
rro

r n
or

m

10-3

10-2

10-1

100 Hadley test-case: Normalized errors
HEVI
HEVE
FULL
O(1)
O(2)

Convergence Rate: DCMIP, Kent et al. (2014), Hall et al (2015)

Errors/Models: Mcore CAM-FV ENDGame CAM-SE HOMAM
`1 2.22 1.93 2.18 2.27 2.62
`2 1.94 1.84 1.83 2.12 2.43
`∞ 1.64 1.66 1.14 1.68 2.16

Table: Average convergence rate for the normalized error norms for the Hadley test (DCMIP test 1-2)
computed using resolutions 2◦,1◦,0.5◦ horizontal, and respectively with 30,60,120 vertical levels.

Temporal convergence is between 1st and 2nd-Order with the Hadley test.
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3D Advection: Flow Over Rough Orography (DCMIP-13)

Figure: Schematic for DCMIP-13 test initial condition (Figure courtesy: David Hall)

A series of steep concentric ring-shaped mountain ranges forms the terrain. The prescribed
flow field is a constant solid-body rotation (Kent et al., 2014).

The tracer field q is given by three thin vertically stacked cloud-like patches (non-smooth)
which circumnavigate the globe and return to their initial positions after 12 days.
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HOMAM: 3D Advection, Flow Over Rough Orography

Day = 0

Day = 6

Day = 12

Day = 0

Day = 6

Day = 12

z 
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m
)

ζ 
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m
)

z 
(k

m
)
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(k

m
)

ζ 
(k

m
)

HOMAM setup for 1◦ L120:
Ne = 30, Np = 4 (GLL);
Vnel = 30; Ng = 4 (GL),
∆t = 6s, 12 day simulation.

Error MCore CAM-SE HOMAM
Norm 1◦L120 1◦L120 1◦L120
`1 0.83 0.65 0.78
`2 0.55 0.27 0.50
`∞ 0.73 0.75 0.76

[Kent et. al. (2014); Hall et al. (2015)]

Vertical cross-sections along the equator for the tracer field q = q4 for the DCMIP test

The results are simulated with HOMAM using the HEVE/HEVI scheme at a horizontal
resolution of 1◦, 60 vertical levels, and ∆t = 12s.

Ram Nair (rnair@ucar.edu) Time-Split DG-NH Dycore ICMS: March 23rd, 2015 30 / 41



WENO-Based Monotonic (Bound Preserving) Limiter for DGM

Uses compact element stencils, ideal
for cubed-sphere grids.

Cell average U0,l(ξ ,η), l = 1,2 . . . ,4 is
computed with

U0,l(ξ ,η)=
k

∑
s=0

k

∑
m=0

Ul(ξs,ηm)hs(ξ )hm(η)

Modify the coefficients Ul(ξs,ηm)
using WENO weights and local
conservation as a constraint.

Apply local filter for positivity
preservation

Ũl(ξ ,η) = θ̂Ul(ξ ,η)+(1− θ̂)U0,l

θ̂ = max
[
| M−U
Ml −U

|, |m
∗−U

m∗l −U
|,1
]

To be implemented in HOMAM

Guo, Nair & Zhong, (IJNMF, 2015)
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Advection on a cubed sphere

WENO limiter controls internal oscillations, BP filter (optional) preserves positivity
Convergence with solid-body rotation of a Gaussian field on the cubed-sphere. New limiter
maintains high-order convergence
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NH2D–DGP2: Inertia-Gravity Wave Test ( θ ′)

The evolution of a potential temperature perturbation θ ′ (K) in a channel having periodic
lateral and no-flux top/bottom boundary conditions. [Skamarock & Klemp (1994) ]

Domain [0,300]× [0,10] km2, T=3000 s. For ∆x/∆z = 10,100; ∆t = 0.14,1.4s, respectively. For
the reference solution (explicit), ∆t = 0.014s.
Widely used for testing time-stepping methods in NH models, and ∆z� ∆x
Ref: Bao, Kloefkorn & Nair (MWR, 2015)
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Inertia Gravity Wave Convergence Study

HEVI-DG: Convergence with large aspect ratio (1 : 100)
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HOMAM: Nonhydrstatic Gravity Waves (DCMIP-31)

NH Gravity Wave test (DCMIP-31) on a reduced planet (X = 125), θ ′ after 3600s
Ne = 25,Np = 4,Ng = 4 (∆x≈ ∆z≈ 1 km), ∆t = 0.20s
The initial state is hydrostatically balanced and in gradient-wind balance. An overlaid
potential temperature perturbation triggers the evolution of gravity waves.

ICON-IAP

ENDGame

Reference
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Nonhydrstatic Gravity Waves (DCMIP-31)

Ref: ICON-IAP

NH Gravity Wave test (DCMIP-31) on a reduced planet (X = 125), U ′ after 3600s

HEVI, HEVE produce identical results. HEVI is independent of the vertical CFL constraint
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Straka Density Current [Straka et al. (1993)]

To validate Diffusion Process in HEVI-DG with LDG/FR

Density Current Test (Potential Temparature)

t = 0 Sec t = 300 Sec

t = 900 SecDGNH

Domain [−26.5,26.5]× [0,6.4]km2. θ = θ +∆θ ;

Initially, θ = 300K, ∆θ =−15K, u = w = 0.

Simulated for 900 s, with diffusion (ν = 75.0m2/s.) added to the momentum and the
potential temperature equations.

No-flux boundary conditions (u ·n = 0) are used for all boundaries

Due to the symmetry, only half of the domain is shown
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Straka Density Current: Diffusion LDG vs. FR

Second-order diffusion with LDG and FR approach
FR-Diffusion is found to be about 20% more efficient than that of LDG.

Domain [−26.5,26.5]× [0,6.4]km2,
simulated for T = 900s.

∆t = 0.05s, ∆z = 100m, ∆x = 100m
with P2-DG and

FR approach uses narrow stencil
(nearest neighbor), results are
comparable with that of LDG
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Schär Mountain (2D) Test [Schär et al. (2002)]

To validate Orographic influence on HEVI-DG splitting

The mountain profile

h(x) = h0 exp
(
− x2

a2

)
cos2

(
πx
λ

)
Domain [−25,25]× [0,10] km, simulated for
T = 10h, and h0 = 250m, λ = 4km, a = 5km,
u = 10 m/s. (Non-reflecting BC)

50×25 elements, ∆t = 0.125s, ∆z = 210m,
∆x = 250m with P3-DG and RK-3 integrator.

Vertical Wind (w m/s) 

HEVI-DG RK-DG
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Schär Mountain Test-2

w after 1800 s, with ∆t = 0.125s. P3-DG
(GL) discretization.

Schär Mountain with higher elevation (max
slope ≈ 55%)

Virtually identical results with explicit RK3
and HEVI [Bao, Kloefkorn & Nair (MWR,
2015)]
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Summary

Early results with HOMAM Dycore (split and unsplit) are promising, and it performs well
under benchmark test cases.

Accuracy of the operator-split DG is acceptable.

HEVI effectively relaxes the CFL constraint to the horizontal dynamics only, and permits
significantly larger time step as opposed to the fully explicit method. Maintains O(∆t2)
accuracy.

New WENO-based limiter is effective and preserves high-order accuracy.

The diffusion process via FR method is efficient, and accuracy is comparable to that of LDG,
for SW and NH 2D models. Because of the compact stencil, FR is an efficient option for
hyper-diffusion.

Future Work

Complete all the DCMIP NH benchmarks for HOMAM (WIP)

Improve the efficiency of HEVI time-stepping. For the horizontal part, employ multi-rate
time integration scheme (subcycling).

Adopt efficient preconditioner for the implicit solver in the vertical part. Test Hybrid-DG
method for the implicit part. IMEX for HEVI etc.

Test FR hyper-diffusion for HOMAM. Scalability study with large number of processors

Thank You!
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