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Abstract: An efficient and scalable global discontinuous Galerkin atmospheric model
(DGAM) on the sphere is developed. The continuous flux form of the nonlinear shallow
water equations on the cubed-sphere (in curvilinear coordinates) are developed. Spatial
discretization is a nodal basis set of Legendre polynomials. Fluxes along internal
element interfaces are approximated by a Lax-Friedrichs scheme. A third-order strong
stability preserving Runge-Kutta scheme is applied for time integration. The standard
shallow water test suite of Williamson et al. (1992) is used to validate the model. It
is observed that the numerical solutions are accurate, the model conserves mass to
machine precision, and there are no spurious oscillations in a test case where zonal
flow impinges a mountain. The serial execution time of the high-order nodal DG
scheme presented here is half that of the modal version DG scheme. Development time
was substantially reduced by building the model in the High Order Method Modeling
Environment (HOMME) developed at the National Center for Atmospheric Research
(NCAR). Performance and scaling data for the steady state geostrophic flow problem
Williamson et al. (1992) is presented. Sustained performance of 8% of peak is observed
on 2048 processor of a IBM Blue Gene/L supercomputer.
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1 INTRODUCTION

The spectral transform method has played a central role in
global climate modeling for the past two decades (Washing-
ton and Parkinson (2005)). However, the scalability of the
spectral transform method is inherently limited because it
requires non-local communication. As a result, the spec-
tral transform method is poorly suited to take advantage of
a new generation of massively-parallel distributed-memory

computers with O(10, 000) processors. In order to address
this issue, several groups have adopted scalable high-order
methods such as spectral element (SE) method to build
the next generation of climate models (Loft et al. (2001);
Giraldo et al. (2004); Fournier et al. (2004)). Spectral el-
ements have numerous attractive features such as expo-
nential convergence, computational efficiency, scalability,
and the ability to handle complex geometries. However, a
major disadvantage of SE atmospheric models is a lack of
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conservation. For climate and atmospheric chemistry ap-
plications, conservation of integral invariants such as mass
and energy as well as monotonicity of the solutions are
crucial. To date there have been several efforts to develop
conservative atmospheric models but they are all based
on classic low-order finite-volume methods (Lin and Rood
(1997)).

The high-order discontinuous Galerkin (DG) method is
ideally suited for atmospheric numerical modeling because
it is inherently conservative and can incorporate mono-
tonic limiters. Moreover, it retains all the advantages of
the SE method. The DG method is a hybrid approach
combining the finite-volume and the finite-element meth-
ods, exploiting the merits of both. DG methods became
popular following the work of Cockburn and Shu (1989,
2001).

The High-Order Method Modeling Environment
(HOMME (2004)) is a global atmospheric modeling
framework developed at the National Center for Atmo-
spheric Research (NCAR), and is based on highly scalable
SE method employing the cubed-sphere geometry (Loft
et al. (2001); Thomas and Loft (2002)). In this paper we
present an overview of the DG shallow water model based
on nodal discretization, as implemented in HOMME. We
compare the results with the modal version of the DG
shallow water model on the cubed-sphere developed by
Nair et al. (2005a,b). Moreover, we present numerical
results on the Williamson et al. (1992) shallow water test
suite, and show performance results for a selected test case
on 2048 processors of the IBM Blue Gene supercomputer.

2 GLOBAL SHALLOW WATER MODEL

As described in Nair et al. (2005a), the sphere is decom-
posed into six identical regions (Figure 1), obtained by
central (gnomonic) projection of the faces of the inscribed
cube onto the spherical surface Sadourny (1972); Ronchi
et al. (1996). Each of the six local coordinate systems is
free of singularities and employ identical metric terms, cre-
ating a non-orthogonal curvilinear coordinate system on
the sphere. Figure 1 shows a cubed-sphere with a total
of 150 elements, where each element consists of a Gauss-
Lobatto-Legendre (GLL) grid. In Figure 1, cube-face edges
are marked by thick lines, while the intersection of thin
lines mark each of the 8 × 8 GLL points.

Let a1 and a2 be the covariant base vectors of the trans-
formation between inscribed cube and spherical surface.
Let v = v(λ, θ) be the horizontal velocity vector specified
on the sphere with longitude λ and latitude θ. The com-
ponents of the covariant vectors are given by u1 = v · a1,
u2 = v · a2 and the corresponding contravariant compo-
nents are expressed as v = u1

a1 + u2
a2. The metric

tensor of the transformation is defined as Gij ≡ ai · aj .
Covariant and contravariant vectors are related through

Figure 1 A cubed-sphere with 150 elements (Ne = 5) that

span the surface of the sphere. Each element contains 8 × 8

Gauss-Lobatto-Legendre (GLL) quadrature points (Nv = 8).

the metric tensor Gij such that ui = Giju
j, ui = Gijuj,

where Gij = (Gij)
−1 and G = det(Gij). For equiangular

coordinates (x1, x2), the metric tensor for all six faces of
the cube is

Gij =
1

r4 cos2 x1 cos2 x2
×

[
1 + tan2 x1 − tanx1 tan x2

− tanx1 tan x2 1 + tan2 x2

]
= AT A, (1)

where r = (1 + tan2 x1 + tan2 x2)1/2 and
√

G =
1/r3 cos2 x1 cos2 x2. The matrix A in (1) can be used for
transforming v with spherical velocity components (u, v)
to the local cube-face components (u1, u2) and vice versa,
as follows (Nair et al. (2005a)).

A

[
u1

u2

]
=

[
u
v

]
,

A =

[
cos θ ∂λ/∂x1 cos θ ∂λ/∂x2

∂θ/∂x1 ∂θ/∂x2

]
. (2)

The six local Cartesian coordinate systems (x1, x2) that
span the surface of the sphere in Figure 1 are based on
equiangular central projection such that x1 = x1(λ, θ),
x2 = x2(λ, θ), and −π/4 ≤ x1, x2 ≤ π/4.

2.1 Shallow water equations

We consider the flux form shallow water equations in curvi-
linear coordinates as described in Sadourny (1972). The
governing equations for an inviscid flow of a thin layer of
fluid in 2D are the horizontal momentum and continuity
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equations for the height h. Here, h is the depth of the fluid
and it is related to the free surface geopotential height
(above sea level) Φ = g (hs + h), where hs denotes the
height of the underlying mountains and g is the gravita-
tional acceleration.

In curvilinear coordinates, the continuity and momen-
tum equations for the shallow water system may be written
as follows (Sadourny (1972); Nair et al. (2005b)),

∂

∂t
(
√

Gh) +
∂

∂x1
(
√

Gu1h) +
∂

∂x2
(
√

Gu2h) = 0, (3)

∂u1

∂t
+

∂

∂x1
E =

√
Gu2(f + ζ), (4)

∂u2

∂t
+

∂

∂x2
E = −

√
Gu1(f + ζ), (5)

where

E = Φ +
1

2
(u1 u1 + u2 u2), ζ =

1√
G

[
∂u2

∂x1
− ∂u1

∂x2

]
,

f = 2ω sin θ is the Coriolis parameter and ω is the rotation
rate of the earth.

The system (3-5) may be expressed in the following flux
form,

∂

∂t
U +

∂

∂x1
F1(U) +

∂

∂x2
F2(U) = S(U), (6)

where

U =
[√

Gh, u1, u2

]T

F1 =
[√

Ghu1, E, 0
]T

F2 =
[√

Ghu2, 0, E
]T

,

with the source term

S =
[
0,
√

Gu2(f + ζ),−
√

Gu1(f + ζ)
]T

.

3 DG FORMULATION

For simplicity, we proceed with a scalar component of
(6) to describe the DG discretization.

∂U

∂t
+ ∇ ·F(U) = S(U), in D × (0, T ), (7)

for all (x1, x2) ∈ D with initial condition U0(x
1, x2) =

U(x1, x2, t = 0). In (7), F = (F1, F2) is the flux function,
U = U(x1, x2, t), and ∇ ≡ (∂/∂x1, ∂/∂x2) is the gradient
operator.

The computational domain D is the surface of the cubed-
sphere, spanning six identical non-overlapping subdomains
(faces) such that D =

⋃6
ν=1 Ων . Therefore, it is only neces-

sary to consider the discretization for a single subdomain

Ω as the procedure can be analogously extended to the
remaining subdomains. Consider a subdomain Ω which
is partitioned into Ne × Ne rectangular non-overlapping
elements Ωij ; i, j = 1, 2, . . . , Ne, such that

Ωij = {(x1, x2) | x1 ∈ [x1
i−1/2, x

1
i+1/2],

x2 ∈ [x2
j−1/2, x

2
j+1/2]}. (8)

Thus, the total number of elements on the cubed-sphere is
M = 6 × N2

e .
The size of an element Ωij is determined by ∆x1

i =
(x1

i+1/2 − x1
i−1/2) and ∆x2

j = (x2
j+1/2 − x2

j−1/2) in the

x1 and x2-directions, respectively. For t > 0, consider
an element Ωij in the partition of Ω and an approximate
solution Uh = Uh(x1, x2, t) belongs to the finite dimen-
sional space Vh(Ω). Multiplication of (7) by a test function
ϕh = ϕh(x1, x2) ∈ Vh and integration over the element Ωij

results in a weak Galerkin formulation of the problem.

∂

∂t

∫

Ωij

Uh ϕh dΩ −
∫

Ωij

F(Uh) · ∇ϕh dΩ +

∫

∂Ωij

F(Uh) · nϕh ds =

∫

Ωij

S(Uh)ϕh dΩ, (9)

where n is the outward-facing unit normal vector on the
element boundary ∂Ωij .

Along the boundaries of an element (internal interfaces)
∂Ωij , the function Uh is discontinuous and the boundary
integral (third term in (9)) is not uniquely defined. There-
fore, the analytic flux F(Uh) ·n in (9) must be replaced by

a numerical flux F̂ (U−
h , U+

h ). The numerical flux resolves
the discontinuity along the element edges and provides the
only mechanism by which adjacent elements interact. For
simplicity, the Lax-Friedrichs numerical flux as considered
in Nair et al. (2005a,b) is chosen for the present study,
given by

F̂ (U−
h , U+

h ) =
1

2

[
(F(U−

h ) + F(U+
h )) · n−

α(U+
h − U−

h )
]
, (10)

where U−
h and U+

h are the left and right limits of the dis-
continuous function Uh evaluated at the element interface,
α is the upper bound for the absolute value of eigenval-
ues of the flux Jacobian F

′(U) in the direction n. For
the shallow water system (6), the local maximum values
of α in x1 and x2-directions for each element Ωij are de-

fined as (Nair et al. (2005b)) α1 = max
(
|u1| +

√
Φ G11

)
,

α2 = max
(
|u2| +

√
Φ G22

)
. Treatment of flux terms and

vector quantities at the cube-face edges needs special at-
tention, and it is discussed in Nair et al. (2005a).

3.1 Discretization

For each element Ωij , define the local variables ξk = 2(xk−
xk

i )/∆xk
i , with xk

i = (xk
i+1/2 + xk

i−1/2)/2 and k = 1, 2, de-

note the x1, x2-directions, respectively. By using these
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relations, an element Ωij is mapped onto the reference el-

ement Ω̃ij ≡ [−1, 1]⊗ [−1, 1].
An important aspect of the DG discretization is the

choice of an appropriate set of basis functions (polyno-
mials) that span Vh. While Nair et al. (2005a,b) used a
modal expansion basis, in this work we use a high-order
nodal basis set due to its computational efficiency. Nodal
basis sets are popularly used in SE methods (Deville et al.
(2002)). Recently Giraldo et al. (2002) developed a nodal
shallow water model on an icosahedral grid. The choice of
a particular type of basis is problem dependent and their
relative merits are discussed in Karnoadakis and Sherwin
(1999).

The nodal basis set is constructed using Lagrange-
Legendre polynomials hℓ(ξ), ξ ∈ [−1, 1], with roots at
Gauss-Lobatto quadrature points. The basis functions are
defined by

hℓ(ξ) =
(ξ − 1)(ξ + 1)L′

N(ξ)

N(N + 1)LN(ξℓ) (ξ − ξℓ)
(11)

where LN (ξ) is the Legendre polynomial of degree N . Be-
cause the basis function is a Lagrange polynomial it has
the property hp(ξq) = δpq; where δpq = 1, if p = q and
δpq = 0, if p 6= q. Discrete orthogonality of hℓ(ξ) can be
established through the following quadrature

∫ 1

−1

f(ξ)dξ ≈
N∑

i=0

f(ξi)wi, (12)

where wi is the weight associated with GLL quadrature
rule, and it is defined to be

wi =
2

N(N + 1) [LN(ξi)]2
.

Note that the quadrature (12) is exact for polynomials of
degree up to 2N − 1. Consequently, discrete orthogonality
of the basis function hℓ(ξ) can be derived using the prop-
erties of the Lagrange polynomial as follows (Deville et al.
(2002))

∫ 1

−1

hi(ξ)hj(ξ)dξ =
N∑

l=0

hi(ξl)hj(ξl)wl = wi δij . (13)

In the two-dimensional (2D) (ξ1, ξ2) coordinate system,
the test function (ϕh) as well as the the approximate so-
lution Uh are expanded in terms tensor-product functions
from the basis set. Thus,

Uh(ξ1, ξ2) =

N∑

ℓ=0

N∑

m=0

Uℓm hℓ(ξ
1)hm(ξ2), (14)

for − 1 ≤ ξ1, ξ2 ≤ 1

where

hℓ(ξ
k) =

(ξk − 1)(ξk + 1)L′
N (ξk)

N(N + 1)LN (ξk
ℓ ) (ξk − ξk

ℓ )
, k ∈ {1, 2}. (15)

The weak formulation (9) is simplified by mapping the

elements onto the reference element Ω̃ij , and utilizing
(13,14). The final approximation of (7) for an element
Ωij takes the form,

d

dt
Uℓm =

4

∆x1
i ∆x2

j wℓwm
[IG + IF + IS ] , (16)

where IG, IF , and IS are the integrals corresponding to
the gradient, flux, and source terms, respectively, in (9).
The coefficient terms in the right hand side of (16) are
the elements of the inverted mass-matrix that are block
diagonal for the 2D problems by virtue of the orthogonality
relation (13). Integrals appearing in (16) are computed
with an accurate GLL quadrature rule.

A remarkable difference between (16) and correspond-
ing modal version (Nair et al. (2005b)) is the absence of
spectral coefficients. The nodal DG scheme is potentially
more computationally efficient because it relies on solu-
tions in physical space, obviating the need to transform
between spectral and physical space, which are required
by the modal DG scheme (Nair et al. (2005a)).

3.2 Time Integration

The semi-discretized equation (16) for the shallow water
system takes the following form

d

dt
U = L(U) in (0, T ). (17)

Time integration of the shallow water (SW) equations is
performed by solving a system of ODEs (17). We employ
a strong stability preserving Runge-Kutta scheme (also
known as total variation diminishing Runge-Kutta) that
does not introduce spurious oscillations for smooth prob-
lems (Gottlieb et al. (2001)). These schemes are widely
used for solving (17) in the DG discretization, and are
given as follows

U
(1) = U

n + ∆tL(Un)

U
(2) =

3

4
U

n +
1

4
[U(1) + ∆tL(U(1))] (18)

U
n+1 =

1

3
U

n +
2

3
[U(2) + ∆tL(U(2))],

where the superscripts n and n+1 denote time levels t and
t + ∆t, respectively.

The shallow water test cases considered here are rela-
tively “smooth” and numerical integration performed is on
the order of days, therefore, we did not use any limiter or
filter with time integration scheme. For non-smooth prob-
lems (i.e. solution containing shocks and discontinuities) a
monotonic limiter is required.

4 NUMERICAL EXPERIMENTS

Our DG scheme has been extensively tested using var-
ious initial conditions. Williamson et al. (1992) proposed
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a suite of standard tests for the shallow water equations
on the sphere. These idealized tests of varying complexity
include experiments with north-south symmetry, balanced
steady-state flows, and extreme gradients.

We have employed a variety of grid resolutions with to-
tal number of elements M = 6 × N2

e on the cubed-sphere
and each element consisting of Nv × Nv GLL points. To
visually compare our numerical results with existing solu-
tions we use bilinear interpolations to map onto a 128×65
longitude-latitude grid (approximately equal to the T42
resolution).

4.1 Advection on the cubed-sphere

Figure 2 Results on an orthographic projection for cosine-bell

advection along the north-east direction when the bell center

reaches a corner (vertex) of the cubed-sphere. Each element

(Ne = 4) consists of 10 × 10 GLL points.

Solid-body rotation is commonly used to test an advec-
tion scheme over the sphere. The first shallow water equa-
tion test case (SW1) suggested by Williamson et al. (1992)
advects a “cosine-bell” along a great-circle trajectory on
the sphere for 12 days. Note that here only the continuity
equation (3) of the shallow water system is solved. The
initial conditions are specified as follows,

h(λ, θ) =

{
(h0/2) [1 + cos(πrd/r0)] if rd < r0

0 if rd ≥ r0,
(19)

where rd is the great-circle distance between (λ, θ) and the
bell center. The cosine bell of radius r0 = R/3, where
R = 6.37122 × 106 m is the Earth’s radius, is initially
centered at (3π/2, 0) and corresponds to the central point

on a lateral face of the cubed-sphere (see Figure 1). The
maximum height of the cosine bell is h0 = 1000 m. The
velocity components of the advecting wind field are

u = u0 (cosα0 cos θ + sin α0 cosλ sin θ),

v = −u0 sinα0 sinλ,

where u0 = 2πR/(12 days), α0 is the angle between the
axis of solid-body rotation and the polar axis of the spher-
ical coordinate system. When α0, is either zero or π/2 the
flow direction is along the equator in north-south (merid-
ional) direction. For the cubed-sphere, flow in the north-
east direction (α0 = π/4) is more challenging, because the
cosine-bell passes over four vertices and two edges of the
cube during a complete revolution.

Figure 3 Time traces of normalized ℓ1, ℓ2 and ℓ∞ errors for

the cosine-bell advection test. The top two panels show results

with modal and nodal versions of the DG scheme, respectively.

The bottom panel shows corresponding reference results with

the spectral-element model (HOMME).
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Figure 2 shows results on an orthographic projection for
the solid-body rotation for α0 = π/4. Nair et al. (2005a)
extensively studied the transport process over the cubed-
sphere with a modal version of DG advection scheme.
They showed that the cosine-bell passes smoothly over the
vertices and edges, while maintaining high-order accuracy.
The nodal version presented here produces almost iden-
tical results. Figure 3 illustrates the standard ℓ1, ℓ2 and
ℓ∞ errors norms as a function of time for the modal and
nodal DG schemes and the SE scheme for a 12 day simu-
lation. The grid resolution for this test are Ne = 4 (i.e.,
96 elements total), Nv = 16, and ∆t = 30s.

Figure 4 Numerical solution (height fields in meter) for

steady state geostrophic flow test (SW test case 2) after 5 days

of integration. A cubed-sphere with parameters Ne = 5 and

Nv = 10 were used for this test.

The top and central panels in Figure 3 illustrate the error
norms for the modal and nodal version DG, respectively.
The ℓ1 and ℓ2 errors are virtually identical while ℓ∞ error
for the modal version is smaller that of the nodal version.
For reference, we include the corresponding error norms for
a spectral element model as implemented in HOMME from
Thomas and Loft (2002) in the bottom panel of Figure
3. Unlike the SE model, no filter or limiter is used for
DG model runs. The DG solution exhibits smaller error
growth as compared to SE scheme. However, the ℓ∞ plot
for the SE scheme is less oscillatory because of the use of
a spatial filter. While the nodal and modal versions of the
DG discretization give almost identical numerical results,
the serial execution time for the nodal version of the DG
scheme is nearly half that of the modal version.

4.2 Steady state geostrophic flow

Now we consider test case 2 in Williamson et al. (1992),
which is a steady-state solution of the full nonlinear shal-
low water equations (SW2). The wind field is uniform
as in the solid-body rotation case and the equations are
geostrophically balanced during the time evolution. The

initial velocity and height fields are,

u = u0 (cosα0 cos θ + sinα0 cosλ sin θ),

v = −u0 sin α0 sin λ,

g h = g h0 −
u0

2
(2 a ω + u0) ×

(sin θ cosα0 − cosλ cos θ sin α0)
2

where a is the earth’s radius, u0 = 2πa/(12 days), and
gh0 = 2.94 × 104 m2/ s2.

For SW2 we selected the most challenging flow orienta-
tion parameter α0 = π/4. Figure 4 shows the height fields
after 5 days of integration. The experiment was performed
on a grid with Ne = 5, Nv = 10, and ∆t = 36 seconds.

Figure 5 Initial conditions for SW test case 5 (zonal flow

over an isolated mountain). The closed contours indicate the

location of the “mountain” with maximum height 2000 m.

Figure 6 Numerical solution for SW test case 5, zonal flow

over an isolated mountain, after 15 days. A cubed-sphere with

Ne = 32 and Nv = 6 was used for numerical integration.
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4.3 Zonal flow over an isolated mountain

The third experiment considered is test case 5 in
Williamson et al. (1992), zonal flow over an isolated moun-
tain (SW5). This test case, which has no analytical so-
lution, is particularly useful for studying the effective-
ness of the scheme in conserving integral invariants such
as mass, total energy and potential enstrophy. The cen-
ter of the mountain is located at (3π/2, π/6) with height
hs = 2000 (1 − r/R) meters, where R = π/9 and r2 =
min[R2, (λ − 3π/2)2 + (θ − π/6)2]. The wind velocity and
height fields are the same as in the previous case with
α0 = 0, gh0 = 5960 m2/s2 and u0 = 20 m/s. Figure 5
illustrates the initial conditions for this test.

SW5 typically causes difficulties for high-order methods
such as spectral element and spectral transform methods
(Chien et al. (1995)) because of the generation of spurious
oscillations (spectral ringing) at all scales. We have used
a variety of grid resolutions using different combinations
of Ne and Nv to study the numerical behavior of DGAM
for this test. We observe no spurious oscillations using
the DG scheme even with a relatively low resolution grid
of Ne = 32, Nv = 4 (864 × 4 × 4) (Nair et al. (2005b)).
The DG solutions appear similar in quality to the high
resolution spectral T213 solutions shown in Chien et al.
(1995), but without the spurious oscillations.

Figure 6 shows the numerical DGAM solutions after 15
days of integration on a high resolution grid with Ne = 32,
Nv = 6, and ∆t = 30 seconds. For DGAM mass is con-
served to machine precision and other integral invariants,
such as total energy and potential enstrophy, are better
conserved than comparable resolution finite-volume mod-
els (Lin and Rood (1997)). These results are shown in Nair
et al. (2005b).

4.4 Rossby-Haurwitz Wave

The fourth and final experiment is the test case 6 in
Williamson et al. (1992), a zonal wavenumber 4 Rossby-
Haurwitz wave (SW6). The initial state is an exact steadily
propagating solution of the nondivergent barotropic vor-
ticity equation which is not an exact solution of the full
shallow water system.

The top panel of Figure 7 illustrates the initial condi-
tions, and the bottom panel the numerical solution after 14
days of integration using an Ne = 10, Nv = 4 (600×4×4)
resolution grid. Unlike the NCAR spectral model of Chien
et al. (1995), the DG scheme does not employ any diffusion
terms. Nair et al. (2005b) demonstrated that for this ex-
periment the change in total energy is almost one order of
magnitude lower than the finite-volume SW model of Lin
and Rood (1997) and the potential enstrophy error (from
initial value) is of the same magnitude.

Figure 7 Solution for SW test case 6 (Rossby-Haurwitz wave

problem). Top panel shows the initial conditions and the bottom

panel shows numerical solutions after 14 days of model integra-

tion, respectively. A cubed-sphere with Ne = 10 and Nv = 4

was used for numerical integration.
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5 Code Development and Performance

Development time was substantially reduced by build-
ing DGAM in the High Order Method Modeling Environ-
ment HOMME (2004) developed in the Computational Sci-
ence Section (CSS) at NCAR. This environment was orig-
inally designed to support the spectral element method
on the cubed-sphere and has been recently extended to
provide the basic building blocks necessary for rapid de-
velopment of parallel high-order atmospheric models. In
adopting this environment we leverage previous and cur-
rent work. For example, the ability to configure for shallow
water and primitive equations (hydrostatic), support for
various explicit and semi-implicit time-stepping schemes,
efficient implementation of computational kernels, proven
scaling to 1000’s of processors (Loft et al. (2001)), inter-
faces to physics packages, and support for geometrically
non-conforming elements and adaptive meshes.

5.1 Parallel Implementation

The parallel implementation of HOMME is based on a hy-
brid MPI/OpenMP approach. Partitioning of the compu-
tational grid is achieved using either METIS (Karypis and
Kumar (2004)) or a locally developed space-filling curve
algorithm (Dennis (2003)). Use of the space-filling curve
approach eliminates load-imbalance caused by METIS par-
titioning (Loft et al. (2001)), and results in a 25-50% de-
crease in execution time on O(1000) processors. The space-
filling curve approach generates the best partitions when
Ne = 2n3m, where n and m are integers. Because we pro-
vide scaling results for DG on the cubed-sphere grid where
Ne = 32 we describe the space-filling curve partitioning
technique based on a Hilbert space-filling curve (Sagan
(1994)) in greater detail. The first step to partitioning
the computational grid involves the mapping of elements
from the 2D surface of the cubed-sphere into a linear ar-
ray. Figure 8 illustrates the mapping of the 2D surface of
the cubed-sphere into a linear array when Ne = 2. Figure
9 illustrates the Hilbert space-filling curve and elements,
which are indicated by small circles, for one face of the
cubed-sphere grid for Ne = 16.

Figure 8 A mapping of a Hilbert space-filling curve onto a

flattened (left) and a perspective drawing (right) of the cubed-

sphere

The second steps involves partitioning the linear array
into P contiguous groups, where P is the number of MPI
tasks. The space-filling curve partitioning creates contigu-
ous groups of elements and load-balances both the compu-
tational and communication costs.

Figure 9 A Hilbert curve with small circles, which correspond

to the elements, for one face of the cubed-sphere for Ne = 16.

The modifications required to build DGAM in HOMME
were minor and did not impact parallel scalability. The
existing HOMME communication framework consists of
three different phases: packing, boundary exchange, and
unpacking. We loosely synchronize the communication
phase of the boundary exchange. We based DGAM on
an existing scalable communication framework, though we
do not support overlapping of flux calculations and com-
munications, as in Baggag et al. (1999), because of time
constraints. We first describe the existing HOMME com-
munication framework followed by two additional routines
added to support discontinuous Galerkin.

The pack routine edgeVpack() copies data from the el-
ement data space into a communication buffer. The rou-
tine bndry exchange() exchanges data between neighbor-
ing MPI processes. The unpack routine edgeVunpack()
performs a direct stiffness summation of the data from
the communication buffer back to element space. Two ad-
ditional routines, edgeDGVpack() and edgeDGVunpack(),
were added to support DG within the existing framework.
The packing routine edgeDGVpack() is identical to the ex-
isting edgeVpack() and is provided for naming consistency.
The routine edgeDGVunpack() replaced the existing di-
rect stiffness summation with a data copy into a padded
element data structure. The padded data structure con-
tains field values for the element as well as a halo of the
surrounding elements. The padded data structure is then
provided to the DG flux computation.
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5.2 Blue Gene/L hardware

We next describe the Blue Gene/L (BG/L) hardware, a
1024 node system at NCAR, used for the scaling study.
Each BG/L node has two 700 Mhz IBM PowerPC (PPC)
440 processors and 512 MB of memory. The PPC 440
processor is a low-power superscalar processor with 32 KB
each of L1 data and instruction caches and a prefetch buffer
referred to as the L2 cache. The two processors share a 4
MB L3 cache and an integrated memory controller. While
the PowerPC 440 has two floating-point units (FPUs), the
second FPU is only accessible through a set of special
double-precision floating-point single instruction multiple
data (SIMD) instructions. The SIMD instructions provide
two multiply-add instructions per clock tick, for a theoret-
ical CPU peak of 2.8 GFLOPS.

BG/L provides five networks, including a three-
dimension torus for point-to-point communications and a
broadcast tree for global reductions. A Message Passing
Interface (MPI) BG/L job can be run in one of two modes.
In coprocessor mode a single MPI process runs on each
compute node: one of the processors of the compute node
is used for computation and the other is used for com-
munication. In virtual-node mode two MPI tasks are run
on each compute node, one on each of the two processors.
The advantage of coprocessor is that it affords each pro-
cess access to the full 4 MB L3 cache and twice the main
memory, whereas virtual-node mode affords computation-
ally intensive codes access to the full peak speed of the
system.

5.3 Performance on Blue Gene/L

To assess performance we examine the strong scaling for
shallow water test case 2. We only present performance re-
sults for test case 2 because the floating-point costs for test
cases 2, 5 and 6 are equivalent. We used a cubed-sphere
with 6144 elements (Ne = 32). All tests were performed
using 8 × 8 GLL points (i.e., 7th degree Legendre polyno-
mials).

To determine sustained MFLOPS per processor, the
number of floating-point operations per time step was mea-
sured for the main time stepping loop using hardware per-
formance counters on a IBM POWER4 system. Elapsed
timers based on the rtc() function were employed in the
main time stepping loop during performance tests to ob-
tain the average execution time. An Allreduce() is invoked
to determine the longest execution time per processor and
is used to calculate the sustained execution rate. Model
output is turned off during performance tests.

Figure 10 illustrates that the DGAM sustains between
221 to 306 MFLOPS (8-11%) of peak in virtual-node mode,
and sustains between 266 to 340 MFLOPS (9-12%) of peak
in coprocessor mode. Super-linear speedup is apparent for
low-processor counts in coprocessor mode and is an indi-
cation that the Ne = 32 problem size is larger than the L3
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Figure 10 Sustained MFLOPS per second per processor for

cubed-sphere with Ne = 32 and Nv = 8 in coprocessor and

virtual-node mode on BG/L.

cache for these processor counts. The super-linear speedup
is even more pronounced using virtual-node mode, because
the L3 cache is now split between the two processors.

Though the strong scaling observed is quite good, sus-
tained performance is lower than anticipated. A significant
factor is due to the marginal single processor performance.
While compilers for the PPC 440 are rapidly maturing they
still have significant difficulty generating the SIMD instruc-
tions needed to engage the second FPU, when compiling
with -qarch=440d. Consequently, we are only able to take
advantage of one of the floating-point units (by compil-
ing with -qarch=440.) We expect a significant increase in
sustained performance with more mature compilers.

Another contributing factor to lower than anticipated
sustained performance is that test case 2 is a 2D prob-
lem. The sister SE primitive equation implementation in
HOMME (quasi-3D) achieves approximately 20% of peak
on IBM POWER4 systems and experience with a 3D spec-
tral element code indicates that 30% of peak is obtain-
able for slightly larger polynomial degrees (Tufo and Fisher
(1992)).

6 Summary and Conclusions

A nodal high-order Discontinuous Galerkin atmospheric
model (DGAM) has been developed. The model equation
rely on the nonlinear flux form shallow water equations
on the sphere. The computational domain is the cubed-
sphere where the sphere is decomposed into six identical
regions obtained by central (gnomonic) equiangular pro-
jections of the faces of the inscribed cube onto the spher-
ical surface. The DG discretization employs a high-order
nodal basis set consisting of Legendre polynomials; fluxes
along the boundaries of the elements are approximated
by a Lax-Friedrichs scheme. A third-order strong sta-
bility preserving Runge-Kutta scheme has been used for
time integration, without any filter or limiter. DGAM has
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been validated using the standard test suite proposed by
Williamson et al. (1992).

The nodal version of the DG scheme is found to be nearly
twice as fast as the the modal version (Nair et al. (2005b)).
The nodal DG scheme exhibits exponential convergence for
SW test case two (steady state geostrophic flow problem).
The DG solutions to the SW test cases are much better
than those of the spectral model of Chien et al. (1995) for
a given spatial resolution. Even with high-order spatial
discretization, the DG solutions do not exhibit spurious
oscillations for the flow over a mountain test case. Conser-
vation of integral invariants has also been compared with
existing finite-volume models (e.g., Lin and Rood (1997)).
Our model conserves mass to machine precision, and al-
though the scheme does not formally conserve global in-
variants such as total energy and potential enstrophy, con-
servation of these quantities is better preserved than in
lower order finite-volume models. The DGAM model im-
plemented using the NCAR HOMME framework achieves
between 8-11% of peak on processor counts of 16 - 2048
of the IBM Blue Gene supercomputer. Processor counts
greater than 2048 requires careful attention to MPI pro-
cess placement on BG/L to minimize communication cost.
While the strong scaling is quite good for a 2D problem,
the sustained performance is lower than anticipated; with
more mature compilers, we expect somewhere between a
1.5 and 2x improvement. The development of a 3D dy-
namical core based on DG formulation presented here is in
progress.
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