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Cascade interpolation for semi-Lagrangian advection over the sphere
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SUMMARY

A cascade interpolator, previously proposed by the authors for semi-Lagrangian advection in Cartesian
geometry, 18 extended to spherical geometry. It js evaluated using two test problems—solid-body rotation and
strong deformational How—and found to be both accurate and efficient. The second problem is particularly
challenging. It is a generalization to spherical geometry of Doswell’s idealized cyclogenesis problem with an
exact solution.

KEYWORDS: Cascade interpolation Idealized cyclogenesis  Semi-Lagrangian advection Spherical
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. INTRODUCTION

Cascade interpolation employs a sequence of one-dimensional (1-D) interpola-
tions to perform high-order interpolation in multi-dimensions in the context of semi-
Lagrangian advection, and was first proposed by Purser and Leslie (1991), hereinafter
referred to as PL91. These authors have subsequently demonstrated its effectiveness in
a series of papers (Purser and Leslie 1994, 1996a,b, 1997; Leslie and Purser 1993) for
both backward- and forward-trajectory semi-Lagrangian schemes: conventional interpo-
lation techniques are particularly difficult and expensive for the latter. A typical tensor
product interpolation in 3-D, based on the classical 1-D Lagrange interpolator, requires

O(p?) operations per grid point per field, where p is the formal order of accuracy of
the interpolator. However, a cascade scheme based on the same 1-D interpolator needs
only O(p) operations, a potentially significant saving. This, as advocated in the Purser
and Leslie series of papers referred to above, makes the use of higher-order interpola-
tion economically viable. There is, however, a non-negligible computational overhead
incurred by the PL91 algorithm due to the cost of determining intersection points of the
associated Eulerian and Lagrangian meshes.

sun and Yeh (1997), hereinafter referred to as SY97, recently proposed a variant of
cascade interpolation that also incorporates the monotonic filter introduced in Sun ef al.
(1996). This filter is based on that of Bermejo and Staniforth (1992), with a modification
to better capture local extrema. Nair er al. (1999), hereinafter referred to as NCS99,
significantly reduced the above-mentioned overhead of cascade interpolation by greatly
simplifying the PL91 and SY97 procedures to determine mesh-intersection points, and
demonstrated negligible loss of accuracy in the context of cubic interpolation. They also
improved the robustness of the Sun et al. (1996) monotonic filter by eliminating spurious
local minima that can occur in regions of large gradient.

Because of the economic promise of cascade interpolation, participants at a recent
workshop sponsored by the European Centre for Medium-Range Weather Forecasts
(ECMWF) recommended that it should be further developed for applications in spheri-
cal geometry (see European Centre for Medium-Range Weather Forecasts 1996). How-
ever, as noted in PLOI, this is not straightforward due to the convergence of the merid-
ians to the polar singularities of the spherical coordinate system. To address this issue,
Purser and Leslie (1996b) introduced a variant of their cascade scheme that deforms the
spherical mesh near the polar regions using a local mapping strategy. The procedure is
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rather complex and computationally expensive, but this is somewhat mitigated by only
being required within a spherical cap enclosing a given pole.

The purpose of the present work is to extend to spherical geometry (see section 2) the
accurate and efficient NCS99 algorithm for Cartesian geometry. The extended scheme
is evaluated in section 3 for 2 standard solid-body-rotation test problem, and in section
4 for a new test problem. This latter problem is a generalization to spherical geometry
of Doswell’s idealized cyclogenesis problem in Cartesian geometry, and it has an exact
sotution. Conclusions are given in section 3.

2. CASCADE INTERPOLATION ON A SPHERE

Consider the 2-D advection of a passive scalar i on a sphere:

v o gy voyg
— =0,
3r+a{:{3598k+a39

where A and 8 are respectively the longitude and latitude, v and v are the components of
the velocity along the A and # directions, and «a is the radius of the sphere. Let (4;, 8;),
wherei =1,2,...,mand j = 1,2, ..., n,define the regularly spaced Eulerian mesh-
points, where uniform resolution (AL) is assumed in the A direction, with m even. If
the poles are meshpoints, then 6; = ~x/2 and 6, = &/2 respectively correspond to
the south and north poles. The formulation thus includes uniform-resolution latitude—
longitude meshes, with or without pole points, and the Gaussian grids of spectral mod-
els.

Assume that for every meshpoint (A;, 6;) at time ¢ + At there exists a unigue up-
stream Lagrangian point (A;;, 8;;) at time f, and that the position of this latter point is
determined by integrating backwards in the usual way along a trajectory of the flow. Let
(A, ®) denote the curvilinear Lagrangian coordinate system corresponding to the Eule-
rian (A, @) system (Fig. 1). A 6-circle of the regular Eulerian mesh is a longitude circle,
defined by A = A; and its continuation A = A;ym;2 = A; + #. The associated Lagrangian
®;-curve, corresponding to the mapping of this ;-circle, is simply a deformed circle
that joins the upstream points (A;1, 1), (Ai2, €i2), + . ., Rin, Gin)s Rikm2.ns Bitm/2,n)-
Mivem/2n—15 Biem2n—1)s - « - » itms2,1+ Gigmy2,1). There are only m/2 such closed
curves ©;,i =1, 2, ..., m/2, due to the convention adopted here of ‘wrapping a lon-
situde around the whole globe’ to simplify the cascade procedure in polar regions. Note
that if the poles are meshpoints, then the south and north poles (A;, 61) and (%, 6,),
where { is arbitrary, respectively map to the points (A;1, 6;1) and (A;,, 8;,) which are
common to all &;-curves. Also, the continuity and uniqueness of ¢ at the south pole
then imposes the constraints

(1)

Y(dy, 61) =¥ (A2, 61) =+ - = ¥ (dn, 61), (2)
Y1, 0L =Y a1, 001 = =¥ (A1, Om,1), (3)
and similarly for the north pole.

When the poles are meshpoints, the upstream values at the corresponding La-
grangian poles can be determined by interpolating along any or all of the ®;-curves,
of which there are m /2. In the present work, the average of these m /2 values has been
used. However, it was found that the results were virtually unchanged when making an
arbitrary choice among the m /2 possible values, consistent with them only differing by
truncation error. | |



1447

CASCADE INTERPOLATION OVER THE SPHERE

'sani0y00fens premsoeq d10u0p sony| paysep g ‘v wrodysow aeipouusyur wr 2 {g s19asIur Yoy ((2) U

UmOYs 0s1e) '@ 2ama-¢ werdoeide] ogoads v (q) seyseu (seur] uny) meLLMyg pu mumm yorg)) weidunrde () L9138 ur UMOYS St /5 == g Aq pauyap sul-
"$R8S010 AQ SPIOAYSIUI UOTIRSIUN PUT “SO[0I0 0y 49 .

Y UBLIIN pIepuels sy,

syzlodysaus werduesBe-] ‘sopono uado Aq pajouosp axe syutodiysowr uepRmMy "uonRIOdIoNIE SPEISED I0] SHTIEUIOYIS ‘7 amBLg

\\.\1\.\-

£

Yo

(q)

'.';'::::':3'::3:-::::.:.:.,.,.,., . .._._.-.-_1;-_;.:;-;.:‘--:5'.3'-'"" ’
- ""ﬁ"“;‘/‘-“f}:’s:-m:‘:f?':-:-;.:-:.::::-;-;~:-:::--‘-+!-~ o

i.\m.\.\\l\«l\l.!




14438 R. NAIR et ai.

(a) Cascading the interpolation on a sphere

The algorithm presented here for spherical geometry is a generalization of that given
in NCS899 for Cartesian geometry. An intermediate mesh is defined by the mtersection
of the Lagrangian ®;-curves (i.e. m/2 deformed longitude circles) with the Eulerian
A-lines (i.e. n latitude circles defined by 8 = 8; ). It can be summarized as:

O Fori=1,2,...,mand j=1,2, ..., n; obtain in the usual way the upstream
points (A;;, 6;;) that define the Lagrangian mesh.

(ii) Determine {see later) the location of the intersection points of ®-curves (La-
grangian longitudes) with A-circles (Eulerian latitudes).

(iii) For j =1, 2, ..., n; interpolate, using 1-D polynomial interpolation along the
A-circles 8 = 8;, all advected fields from the meshpoints of the Eulerian mesh to the
intersection meshpoints. -

(ivFor j == 1, 2, ..., n; interpolate (see later), using 1-D polynomial interpolation
along the ®;-curves (there are m/2 of them), all advected fields from the intersection
meshpoints to the meshpoints of the Lagrangian mesh.

The 1-D interpolations can again be applied with or without monotonicity constraints.
Periodic cubic-spline and cubic-Lagrange interpolators are used in the present study,
but other choices are possible. It remains to specify how to determine the location of
the meshpoints of the intermediate mesh, and how to subsequently interpolate along
L.agrangian longitudes (1.e. ®@-curves).

(b) Determination of the mesh intersection points

Consider (Fig. 1(b)) a specific ®;-curve. If it intersects the specific Eulerian latitude
circle 6 = 8;, then it will in general do so such that 6;; < 8; < 8; ¢4 for some value
of the integer index £, where 1 < £ <n — 1. It is natural to piecewise approximate the
®;-curve by great-circle segments since it is a deformed mapping of the great circle
A = ;. The intersection of the latitude circle with the segment of the great circle that
joins the two points (A;¢, 6; ¢y and (A; 241, 8; ¢41) of the Lagrangian mesh thus defines a
paint (A, 8;) of the intermediate mesh. It is convenient to perform the mesh navigation
using a unit sphere (g = 1) and the Cartesian coordinates

X == COS A COs
y=sinicosd }=>x*+y*+z8=1, (4)
Z = 8in &

The equation of the §;-latitude circle is
x? 4 y2 = cos? B;. (5)

Also, the great-circle plane that passes through the two points (A, 6;¢) and
(Aig+1, 65 p+1) 18 given by

Ax+By+C:z=0, (6)
where
(A, B, C) = (xig, ¥ie, Zie) X (Xi g1, Yig41s Zi6+1) (7)

and (xjz, Vie, zie) and (x; g1, ¥ie+1. 2i.e+1) are obtained by respectively evaluating (4)
at the latitude—longitude points (A;¢, #i¢) and (A; ¢41, i ¢+1). The intersection of this
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plane with the latitude plane 8 = 8; is therefore the straight line
Ax—%B}.’ﬁ“CSiHQj* (8)

The coordinates of the intersection point of this line and the 8;-latitude circle may now
be found by simultaneously solving (5) and (8). This leads to the quadratic equation

(A% + BHx? + (2 A C sind))x + ((B* + C?) sin® 6, — B%)} =0. 9)

The coordinates (3:, t;) of the sought intersection point are | then found by solving (9)
for x, and the corresponding y is given by (8). The value of A follows from

A=tan"!(y/x), (10)
where the inverse tangent is computed by first using the Fortran intrinsic function
ATAN2, and then adding 27 to the result if it is in the interval [—m, 0) to locate the
root(s) in [0, 2rr). The quadratic equation (9) gives two values for x, and hence two
values for A: a procedure to select the right root is given in the next section. The set

of all such points (A, 6;) defines the mesh intersection points used for the cascade
interpolation.

There are other ways, possibly more efficient depending upon computer architecture,
of determining the mesh-intersection points than that described here. For example,
strictly speaking and at the expense of introducing some additional logic, it is only
necessary to find one of the roots of (9) and thereby one value of A, since the other
value can be obtained by simply phase shifting A by 7. Also, a very good first guess
for a rapidly converging iterative procedure can be obtained by finding the intersection
point of the latitude plane 6 = #; with the chord joining together the points (A;¢, 8iz)
and (Ai ¢+1, 6,¢41).

(c) Interpolarion along the Lagrangian longitudes ©;

Recall that the ©;-curve is defined by joining (Fig. 1) the points (A1, 6i1), (Aj2, 62,
cv vy ins Gindy Qimgzns Bitmyzn)s Ritmizn—1s Oigmpzn—1)s - s igm2,1, Gemy2,1)
together along great-circle segments in a piecewise manner. The interpolation along
Lagrangian latitudes ®; is performed using the distance s along the curve (normalized
to the unit sphere) as independent variable.

The incremental distance As;¢ along the great-circle segment joining together two
points (A;z, 6;¢) and (A; g41, 6; ¢41) of the ©;-curve, obtained using the dot product of
the two position vectors from the origin, is

Asie = co8™ (XieXi o1 + YieVi o1 + ZieZie41), (11)
where the principal value is to be taken. The total distance along the curve from
the reference point (A; 1, 6; 1) is then obtained by a summation of these incremental
distances. A point (A, §;) of the intermediate mesh lying on the great-circle segment

joining the two Lagrangian points (A;¢, 8;¢) t0 (A; g+1, 8 g+1) lies at a distance
AF =cos H(x X + vieV + 2:47) (12)

(principal value), from the Lagrangian point (4;¢, 8;¢). Of the two possible values for 3:,
the correct value satisfies

As < Asiyp. (13)

Now that the (non-uniform) relative position of all the points along the piecewise-
defined Lagrangian latitudes ®; is known, the periodic interpolation to the upstream
departure points (A;;, ;) proceeds in the usual manner (cf. NCS99).
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3. SOLID-RODY ROTATION

To test the proposed cascade interpolation schemes in spherical geometry, a series
of tests are presented for semi-Lagrangian advection using backward trajectories. The
first of these is for solid-body rotation of a cosine bell. This problem is widely used
to test advection schemes in spherical geometry (Ritchie 1987; Williamson and Rasch
1989: Rasch 1994; Li and Chang 1996; Lin and Rood 1996; McGregor 1996; Tolstykh
1996). Unfortunately, and despite the laudable effort of Williamson ef al. (1992) to
standardize problem definition and error measures in order to facilitate the intercompar-
ison of results, experimental configurations and the manner of presenting results differ
significantly in detail from study to study. The basis for the majority of experimental
set-ups seems to be that introduced in Williamson and Rasch (1989) and it 1s the one
adopted here.

(@) Problem definition
The velocity components of the advecting wind field are given by

u == 1ug{Cos & cos & -+ sin ¢ cos A sin 8), (14)
v = -—Hg Si0 & 10 A, (13)

where o is the angle between the axis of solid-body rotation and the polar axis of the
spherical coordinate system (Williamson and Rasch 1989; Williamson et al. 1992). The
flow field is such that when o = 0 the axis of rotation is the polar axis, and when
o =7 /2 it is in the equatorial plane. The initial scalar distribution is assumed to be
a cosine bell. Thus

31 +cos(r/R)}, ifr <R,

0, ifr>R, (16)

YA, 0)= l
where
r == cos~ {sin 8, sin & + cos & cos 8 cos(h — ic)},

is the great-circle distance between (A, 6) and the bell centre, initially taken as (Ac, 6;)
= (37/2, 0). The bell radius R is set to 7z /64 as in Williamson and Rasch (1989),
Rasch (1994), Li and Chang (1996), and Lin and Rood (1996), rather than to the value
of 1/3 proposed in Williamson et al. {1992).

The computational domain consists of a 128 x 65 uniform-resolution (2.8123°)
mesh where the first and last latitudinal grid lines represent the south and the notth poles
respectively. The time-step and the value of the maximum wind speed ug are chosen
such that the angular velocity of the rotational flow is @ = 27 /256 per time-step. Thus a
complete revolution around the globe takes 256 time-steps, and the maximum Courant
number is approximately 10.

(b)Y Error measures

The global measures of error in the numerical experiments are defined as n
Williamson et af. (1992). They are;

T (1Y — )
L () = T (o (17)
7 a2
Iy (lff)ﬁ[ (v =y )] ; (18)

1/2

[7 {wn?}]
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_ maxvyj g [ — ¥
lso () = maxvig ol (19)
M ) = (¥ %:’T), (20)
H =9} =1 {r =)’
V() = =2 : 21
f {(% — o) l
_ Maxvy, g (V) — maxvy ) g (Yrr)
~__miny,p (Y} —miny; g (YT)
wﬂlﬂl - &wﬂ ? (23)

where {1(yr), [h{(y) and I (¢) are standard norms; M), V(¥), ¥max and rmin
respectively are the normalized mean, variance, global maximum and global minimum
of the field; {1 and g are respectively the true solution and its initial value; Ay =
max vy g (Yo) — minyy g(fo) 1s the difference between the maximum and minimum
values of the true solution imitially; and [ is the discrete approximation of the global
integral

2 prjl
I (W =y = %{[ W (A, 8) cos d da db. (24)

0 —1f2

{¢} Results

Experiments have been performed for o =0, €, 7 /2 — € and 7 /2 as recommended
by Williamson et al. (1992), where € = (.05 is the shift parameter. Trajectories are either
evaluated exactly or approximately using the C6t€ and Staniforth (1988) algorithm with
bilinear interpolation. In the discussion of results, attention is, however, focused on ex-
periments that use exact trajectories, since cascade interpolation is then the sole source
of error. Three different iterpolators have been used, and these are denoted by: cas-
cade cubic-spline; cascade cubic-Lagrange; and bicubic-Lagrange; and no monotonicity
constraint is applied. The first two interpolators respectively correspond to using cubic-
spline and cubic-Lagrange interpolation for the 1-D interpolator of the cascade algo-
rithm described in section 2. The third mnterpolator is used to provide a reference result
typical of those obtained using conventional bicubic interpolation in previous studies.

Results after one complete revolution around the globe (256 time-steps) using cas-
cade cubic-spline interpeolation and cascade cubic-Lagrange interpolation are respec-
tively displayed in Figs. 2-3 as a function of «, together with the analytic solution.
Figures 2(a)—(b) and 3(a)—(b) are for polar flow (i.e. the advection direction is poleward
or near poleward, with the bell passing over the two poles during the course of the
integration); Figs. 2(c)-(d) and 3(c)~(d) are for equatorial flow (i.e. the cosine bell is
confined to an equatorial region).

From Fig, 2, all four results when using cascade cubic-spline interpolation are of
generally similar accuracy, and this is confirmed by the error measures (see Table 1) at
the end of the integration. Also, the bell has undergone a small stretching in the direction
of the flow trajectories. A time sequence is shown in Fig, 4 for the offset polar flow
(i.e. w =7 /2 — €) as the cosine bell approaches, passes over, and leaves the two polar
regions. Such a flow field avoids the symmetry of the flow about the pole (Williamson
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Figure 2. Results on an orthographic projection for solid-body rotation of a cosine bell afier one revolution

using cascade cubic-spline interpolation (solid contours). (a) Polar flow with o == 7 /2 and (b) polar flow with

o = 11/2 - €, where € = 0.05; (c) equatorial flow with o =0 and {d) equatorial flow with o = ¢, The analytic
solution is shown by dashed contours. See text for further explanation.

et al. 1992} and is a more stringent test than when « = 7 /2. The convergence of the
meridians has not resulted in a visible distortion of the cosine bell as it passes over the
two poles.

From Fig. 3, using a 1-D cubic-Lagrange interpolator instead of a 1-D cubic-spline
one in the cascade interpolation procedure results in a visible degradation of the results,
primarily a stretching in the direction of the flow. This is confirmed by the error measures
obtained at the end of the integration and given in Table 2. In particular the 14, 1> and I,
errors are all approximately four times larger for cascade cubic-Lagrange interpolation
than for cascade cubic-spline interpolation. This is consistent with the finding of Makar
and Karpik (1996) that bicubic-spline interpolation performs significantly better than
bicubic-Lagrange interpolation in the context of solid-body rotation of a cone around
a sphere. The time sequence in Fig. 5 for the offset polar flow (e, ¢ =7/2 — €)
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Figure 3, Asin Fig. 2, but using cascade cubic-Lagrange interpolation.

TABLE 1.

ERROR MEASURES (DEFINED IN TEXT}, AS A FUNCTION OF ROTATION ANGLE

¢, FOR SOLID-B0ODY ROTATION OF A COSINE BELIL AFTER ONE REVOLUTION USING A
SEMI-LLAGRANGIAN SCHEME WITH CASCADE CUBIC-SPLINE INTERPOLATION AND EXACT
TRAJECTORIES: SHIFT PARAMETER ¢ = 0.03

Iy

I

loo

M

vV

Yinax

wmin

nwi2—¢
i

0.0486
0.0491
0.0495
0.0506

0.0334
0.03335
0.0307
0.0316

0.0281
0.0279
0.6290
0.0354

2.4 % 1077
~53 % 1074
3.0 x 10™4
4.8 x 104

—0.0197
-0.0208
~0.0180
—0.0178

—0.0135
-0.0153
«().0142
—{.0205

—0.0153
—0.0153
~0.0148
—0.0175
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Figure 4. Results on an orthographic projection moving with the cosine bell for offset (o = 2 /2 — ¢) solid-body

rotation of a cosine bell: (a) approaching, (b) passing over, and (c) leaving the northem polar region at time-steps

56, 64 and 72, respectively; (d} approaching, () passing over; and () leaving the southern polar region at time-
steps 184, 192 and 200, respectively.
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TABLE 2. ASINTABLE ! BUT FOR CASCADE CUBIC-LAGRANGE INTERPOLATION

o {y [a foo M |4 Vmax Wimin

4 0.215 6.148 0.109 48 x 1077 —0.108 -0.108 —0.0314
€ 0220 0149 0116 -57x10"% —~0.117 -0.116 —0.0308
n/2—-¢ 0234 0144 0$.120 3.9 x 100 —0.105 -0.120 -0.0296
nf2 0.235  0.144 0121 6.7%x 1073 —0.099 —0.121 —0.0335

1455

using cascade cubic-Lagrange interpolation shows that even though the flow is less-
accurately represented than with cascade cubic-spline interpolation, there is again no
visible distortion of the cosine bell as it passes over the two poles.

Results using bicubic-Lagrange interpolation, corresponding to those discussed
above for the two cascade-interpolation schemes, are summarized in Table 3. Comparing
Tables 13, bicubic-Lagrange interpolation leads to marginally better results than does
cascade cubic-Lagrange interpolation, but both lead to substantially worse results than
does cascade cubic-spline interpolation. Figures are not presented for integrations
using bicubic-Lagrange interpolation since they are visually indistinguishable from the
corresponding ones for cascade cubic-Lagrange interpolation.

TABLE 3., ASINTABLE I BUT FOR BICUBIC-LAGRANGE INTERPOLATION

“ h b loo M v Wenax Yinin

0 0215 0148 0109 12x 1077 ~0.108 ~0.109 —0.0314
€ 0215 0148 0110 —13x 10 —0.109 —0.110 ~0.0310
7/2—€¢ 0227 0141 0113 -17x107 ~0.100 -0.113 -—0.0303
/2 0.227 0141 0114  21x107% —0.099 ~0.114 ~0.0310

The above set of experiments, obtained using exact trajectories, were repeated using
trajectories computed by the C6té and Staniforth (1988) algorithm. This generally
results in a negligible degradation of the results. For example, the errors summarized
in Table 4 for experiments using cascade cubic-spline interpolation and computed
trajectories are generally (but not always) slightly larger than the corresponding ones
obtained using exact trajectories and given in Table 1.

The above-described results may be compared, albeit rather imperfectly due to
variations in experimental configurations and incomplete information, with those of
other studies. For equatorial flow (i.e. @ =0) and semi-Lagrangian advection using
bicubic-Lagrange interpolation, the errors given in Table 3, obtained usmg a 128 x 65
uniform latitude—longitude mesh and exact trajectories, are comparable to those given in
Fig. 7(b) of McGregor (1996), obtained using a 128 x 64 Gaussian grid and computed
trajectories. For poleward flow (i.e. o = n/2), the above-described results may be
compared with those obtained at similar resolution by Williamson and Rasch (1989),

TABLE 4. A5 IN TABLE | BUT FOR TRAIBCTORIES COMPUTED USING THE COTE AND
STANIFORTH ({1988} ALGORITHM
1 fi 52 foc: M 4 t11'"1:1r!eem 1a&hmjin
0 00488  0.0334 Q0283  —4.2 x 107%  —0.0186 ~0.0136 —0.0153
€ 00491  0.0335 00279 22 x 107 00194 —0.0139  —0.0153
xj2—e 00459 00309 00298 15 x 1074 00180 —0.0142 —0.0148
n/2 0.0511  G.0319 0.0351 5.6 x 107% 00178 00205 —0.0175
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Figure 5. As in Fig. 4, but using cascade cubic-Lagrange interpolation,
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TABLE 5, AS IN TABLE 1 BUT FOR POLAR FLOW (g == m/2} USING VARIQUS PUBLISHED

SCHEMES

Authors Experiment 1 Iy f o M V Wenax Wmin
Rasch FG2.8 0327 0209 0169 0 ~8x107% —0.152 —0.0411
Rasch RG2.8 0280 0196 0164 0O —-8x107% —0.150 —0.0271
Rasch RG2.8M 0181 0158 0196 0 —1x10"% —0.210 0
Li& Chang Test 2 - - - 0 (3,031 —(3.030 0
Lid& Chang  Test 3 - - - { ~£),022 (1021 0
Lin & Roocd  FFSL-3 007 0079 0124 O - —(0.124 --0.0009
Lin & Rood  FFSL-5 0.047 00417 0033 ¢ - —0.053 -0.0013

Rasch (1994), Li and Chang (1996), and Lin and Rood (1996). Available error measures
are summarized for some of these in Table 5, where only the best schemes of each study
have been selected, and can be compared with those displayed in Tables 1-4.

The cascade cubic-spline scheme generally appears to have smaller /1, /> and [,
errors than do the other schemes, an exception being the FFSL-5 Lin and Rood (1996)
scheme which has a somewhat smaller Iy error (0.047 v 0.051) but larger [» (0.041 v
(0.032) and [, (0.053 v 0.035) errors. The Rasch (1994), Li and Chang {1996), and Lin
and Rood (1996) schemes all formally conserve mass, and are therefore better in this
respect than the schemes used here. The present schemes could be modified to impose
conservation, e€.g. as in Priestley (1993), at the price of some degradation of other error
measures. This 15 not done here since the focus of the study is simply to describe and
demonstrate an efficient way of performing cascade interpolation on the sphere, and
not to compare and evaluate a plethora of advection schemes. Finally, the Rasch (1994)
schemes have smaller variance errors but larger /1, /2 and [ errors than those of the
cited studies.

4., DEFORMATIONAL FLOW—IDEALIZED CYCLOGENESIS

The second test problem is an extension to spherical geometry of the idealized
cyclogenesis problem of Doswell (1984) that has been used for scalar advection tests

in Cartesian geometry by Randi€ (1992), H6lm (1995), SY97 and NCS99. The flow
field 15 deformational and more challenging than solid-body rotation.

(a) Problem definition

Let ()/, 6') be a rotated coordinate system with north pole at (g, 8y) with respect
to the regular spherical coordinate system (A, #). A steady circular vortex is defined to
have zero normal velocity v’ = d8/dz, and tangential velocity

dA 343
u'(8') = cos 6’ = =3 sech”(yp) tanh(yp), (25)
where
2 cos 6’
8y = ,
P 1 -+ sin 6’ (26)

and y 1s a (constant) stretching parameter that controls the length-scale of the vortex
with respect to a unit sphere. Defining a polar-stereographic plane tangent to the north
pole of the rotated coordinate system, the variable p can be interpreted (see appendix)
as the distance from this pole of the projection of a point (A’, ") onto this plane. The
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amplitude of the vortex has been normalized to have a maximum tangential velocity of
unity, and this occurs (see appendix) at

QIEQL':HI“]' (}’ —“{3) ; (27)
o |
where
1 3]
c=-1n (“/— + ) ~ 0.3292395. (28)

4 V3i—1

The initial condition for the advected scalar is ¥ (2, ', 0) = —tanh{(p/8) sin A"},
where o is the characteristic width of the frontal zone. Thus the analytic solution at
time ¢ 18

WO, 8, 1) = — tanh {g sin(\ — (.of)] , (29)
where
@) =D (30)
cos #/

is angular velocity. The passive advection equation in the rotated coordinate system is
given by (1), but with A and & respectively replaced by A’ and #’. It is easily verified
by substitution into the resulting equation that (29) is indeed an exact solution when the
velocity field is specified by (25) and v’ = 0.

Details are given in the appendix on the equivalent specification of this idealized
cyclogenesis problem in the unrotated (A, 8) coordinate system.

{(b) Results

By setting ¥ = 3/2 and & = 0.01, and by integrating 2.5 time units on the same
128 > 65 uniform mesh defined in the previous section, a deformational advection
problem in sphenical geometry 18 obtained that is of similar numerical difficulty to
that used in the SY97 and NCS99 studies in Cartesian geometry. This value for y
corresponds to centring the vortex at a latitude of approximately 65°N. Note that the
isopleth of maximum wind speed passes over the north pole of the computational
domain to strengthen the challenge for numerical advection schemes. The exact solution,
after projection onto the plane tangent to the vortex center, is displayed in Fig. 6 at initial
time and ¢ = 2.5 time units.

The same global measures of error, defined by (17)-(23), are used here as those
adopted 1n section 3 for solid-body rotation, but with one exception. The normalized
mean M defined by (20) 1s singular for the present deformational problem. Since M 15 a
measure of mass conservation, it is replaced by the mass measure used in NCS99 for the
analogous deformational problem in Cartesian geometry, 1.e. by the normalized quantity

I{y —miny; (o)}
I {40 —minv, o(¥o)}
This quantity has the value of unity when mass is exactly conserved.

Results at ¢ = 2.5 are displayed in Figs. 7 and 8, without and with the use of the
NCS99 filter, respectively, and summarized in Table 6. All were obtained using cascade

Mass == (31)
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Figure 6. The exact solution (see text), projected onio the plane tangent to the vortex centre, al {a) initial time
and (b) ¢ = 2.3.
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TABLE 6. ERROR MEASURES {DEFINED IN TEXT) AT 7 =2.5 FOR DEFORMATIONAL FLOW,
USING: A SEMI-LAGRANGIAN SCHEME WITH CASCADE CUBIC-SPLINE INTERPOLATION AND
EXACT TRAJECTORIES; 16 OR 64 TIME-STEPS; AND WITHOUT OR WITH A MONOTONIC FILTER

Monotonic  No. of

filter t-steps i iy foo Mass vV Wmax Winin
No 16 00297 060940 1.7440 1.06045 00931 05684 —0.3111
No 64 00287 60843 10302 1.0030 —=0.0963 01144 -—-0.1786
Yes 16 06283 00982 1.3260 10039 -0.1151 0 0
Yes 64 0.0302 O009BR 10571 L0070 —0.1202 0 0

TABLE 7. ASiN TABLE 6, BUT FOR TRAJECTORIES COMPIFTED USING THE COTE AND STANI-
FORTH { 1988) ALGORITHM

Monotonic  No. of

filter t-steps } {5 { oo Mass 4 Wmax Ymin
No 16 0.0309 0.1011 18660 10043 -0.0928 (0.5335 -{.2878
No 64 0.0288 GO0849 16900 L0040 --0.0862 0.1200 —0.1805
Yes 16 0.0295 01045 16338 10037 01145 O 0
Yes 64 0,030 00990 10492 16071 —0.1200 0 0

cubic-spline mterpolation with exact trajectories and either 16 or 64 time-steps (which
correspond to Courant numbers of approximately 64 and 16). An intercomparison of
these results and the exact solution (Fig. 6(b)) reveals that: all four integrations generally
represent the exact solution quite well; overshoots and undershoots are noticeable in the
integrations without a monotonic filter (Fig.7), and particularly noticeable (Fig. 7(a))
for the longer time-step integration having fewer interpolations to damp the overshoots
and undershoots of the Gibbs phenomenon; the monotonic NCS99 filter eliminates
overshoots and undershoots (Fig. 8) while well maintaining the essential details of the
exact solution; and the numerical solution is relatively insensitive to a quadrupling
of time-step (cf. Figs. 7(a) and 8(a) with Figs. 7(b) and 8(b)) respectively. Note,
however, that the normalized global maximum (Yrpay) and minimum (Yy,), and the
loc norm, are quite large since they represent extreme values and are sensitive to the
Gibbs phenomenon associated with the quasi-discontinunons nature of the solution. It
has been verified, by plotting difference fields between the numerical results and the
exact schation, that the larger errors all occur in the immediate vicinity of the gquasi-
discontiuity of the solution as expected.

The above set of experiments, obtained using exact trajectories, were repeated using
trajectories computed by the CO6té and Staniforth (1988) algorithm. The results are
visually indistinguishable from those displayed in Figs. 7-8 and are therefore not shown.
The error measures for this set of experiments are summarized in Table 7. Comparison
of these with the corresponding ones (Table 6) obtained with exact trajectories confirms
that the use of computed trajectories instead of exact ones has a marginal impact on the
results.

A further set of experiments was performed, but this time using cascade cubic-
L.agrange instead of cascade cubic-spline interpolation. On the one hand, this results ina
less-severe Gibbs phenomenon in the absence of the monotonic NCS99 filter (cf. Figs. 7
and 9 respectively obtained using cascade cubic-spline and cascade cubic-Lagrange
interpolation). On the other hand the results are visually indistinguishable from one
another when the NCS99 filter is used, and are therefore not shown. Using cascade

cubic-Lagrange instead of cascade cubic-spline interpolation worsens the /1 and [; errors
{cf. Tables 6 and 8).
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Figure 7. The numerical solution at ¢ = 2.5, projected onto the plane tangent to the vortex centre, and obtained
esing cascade cubic-spline interpolation, with exact trajectories, without & monotonic filter, and with {a} 16 time-
steps and {b) 64 time-steps.
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Figure B, As in Fig, 7, but with the NCS599 monotonic filter.
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Figure 9. Asin Fig. 7, but using cascade cubic-Lagrange interpolation.
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TABLE S, ASINTABLEG, BUT FOR CASCADE CUBIC-LLAGRANGE INTERPOLATION

Monotonic  No. of

filter -steps £ {2 oo Mass V Yinax Winin
No 16 0.0323 00994 15964 10044 01005 04169 —0.1980
No 64 0.0384 8.1068 10126 1.0042 01077 01296 —0.1168
Yes 16 0.0322  0.1063 1.5120 10038 -0.1224 0 )
Yes 64 G.0393  0.11%0 1.6041  1.006f —0.136 0 0

3. CONCLUSION

An accurate and efficient cascade interpolator, previously proposed by the authors
tor semi-Lagrangian advection in Cartesian geometry, has been extended to spherical
geometry. It has been evaluated using backward trajectories for two test problems—
solid-body rotation and strong deformational flow—and found to be both accurate
and effictent. The first problem is the widely used solid-body rotation of a cosine
bell. The second is a generalization to spherical geometry of Doswell’s idealized
cyclogenesis problem with an exact solation, and its highly-deformational flow field
1s more challenging than solid-body rotation.

Three different interpolators have been used: cascade cubic-spline; cascade cubic-
Lagrange; and bicubic-Lagrange. The monotonicity constraint of NCS99 has been
apphed for the deformational flow problem. Trajectories have been either evaluated
exactly or approximately using the C6té and Staniforth (1988) algorithm with bilinear
mterpolation.

For the smooth solid-body rotation prt}biem, using a 1-D cubic-spline interpolator
instead of a 1-D cubic-Lagrange one in the cascade interpolation procedure virtually
eliminates the stretching of the cosine bell in the direction of the flow. In particular the
l1, I3 and [, errors are all approximately four times smaller for cascade cubic-spline
mterpolation than for cascade cubic-Lagrange interpolation. Bicubic-Lagrange interpo-
Jation leads to marginally better results than does cascade cubic-Lagrange interpolation,
but cascade cubic-spline interpolation leads to significantly better results than those ob-
tained using either of these two Lagrange interpolators. Comparison of the described
results with those of other studies show them to be very competitive.

For the more challenging deformational flow problem: overshoots and undershoots
are noticeable in the integrations using the cascade cubic-spline interpolator without
a monotonic filter, particularly for the longer time-step integrations; the monotonic
NCS99 filter eliminates overshoots and undershoots while well maintaining the essential
details of the exact solution; and the numerical solution is relatively insensitive to
an increase of tume-step. Using cascade cubic-Lagrange instead of cascade cubic-
spline interpolation results in a less-severe Gibbs phenomenon in the absence of the
monotonic NCS99 filter and the results of the two cascade interpolators are visually
indistinguishable from one another when using the NCS99 filter.

The use of computed trajectories instead of exact ones has a marginal impact on the
results for either of the two test problems.

How best to apply the cascade method to the interpolation of vector quantities in
polar regions is still an open guestion. The applicability of the method to distributed-
memory parallel-processing computers is also an open question. The cascade cubic-
Lagrange interpolator would presumably be preferable to the cascade cubic-spline one,
since the data and inter-processor communication are inherently more localized.

It 15 not clear (at least to us) how to apply the ideas outlined herein to efficiently
perform cascade interpolation in the regions of reduced resolution around the two poles
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using reduced-resolution Gaussian grids of the type discussed in Hortal and Simmons
(1991) and Courtier and Naughton (1994). The proposed cascade algorithm could in
principle be applied everywhere outside the two polar caps. However, as pointed out
by one of the referees, this approach would be of limited applicability—for the grid
used at ECMWE, this region is already restricted to within 25° of the equator at T213
resolution, and this shrinks to plus or minus 15° when using their experimental T639
resolution model with a ‘linear’ grid.
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APPENDIX

IDEALIZED CYCLOGENESIS IN SPHERICAL GEOMETRY—FURTHER DETAILS

The polar-stereographic tangent plane

Let (', 8') be a rotated coordinate system with north pole at (A, 6p) with respect to
the original spherical coordinate system (A, &). Now define a plane tangent to the north
pole of this rotated coordinate system. The coordinates on this tangent plane of a point
that has been polar-stereographically projected from the arbitrary location (1/, 8") on
the unit sphere are

X =m(9) cos B cos A’, (A.1)
Y =m(8) cos 8 sin i/, (A.2)
where
I+ si ) 2
(') =~ S0T/2) (A3)

] +sin® 1+ sing’

15 the map-scale factor of this conformal polar-stereographic transformation, which is
true at 90° N. The distance p of a point lying in this tangent plane from its contact point
with the sphere is thus

2cos b’

— (X% + YHY? =m0 cos 9’ = i
p= ) @) 1+ sin &’

(A.4)

The variable p can be interpreted as being one of the two independent variables of a
polar-coordinate system (p, A') lying within the tangent plane, whose origin is at the
plane’s contact point with the sphere.

Maximum tangential velocity
Maximizing the expression given in (25), the maximum value of 1’ (8")occurs where

tanh{yp) = E/\/g, (A.5)
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1.e. where

2cos 8 1 V34l
8 = — In . A6
e 1 +sing’ 2y (ﬁml) (A.0)

Substituting {A.5) into (25) verifies that the maximum value of #'(8’) is unity. By
expressing cos 6' and sin & in terms of tan(8’/2), (A.6) can be solved to yield

6 =2 tan~" (}' - C) 3 (A7)
y+e
where
1 NEES |
¢ =~ 1In 2 0.3292395. A.8)
4 (\/"5 - 1) (

Exact upstream particle positions

Analytically integrating (25) and v’ = d6'/dt = 0 backwards in time, the exact
upstream position of a particle at time ¢ that arrives at a point (A, ') at time ¢ + Az
is given by

V() =32'(t + At) — w(@1AL, (A.9)

6 = 6'(t + At). (A.10)

Specifying the problem in the unrotated coordinate system

To specify the problem equivalently in the unrotated coordinate system (A, &), the
following relations between the ()", #") and (A, &) coordinate systems are used (Ritchie
1987; McDonald and Bates 1989):

X (x, ) = tan™" { , Sin — 20) ] , (A.11)
sin G Cos{A — Ag) — cos g tan &
8’ (x, 8) = sin~! {sin 6 sin fy + cos & cos g cos() — Ag)}, (A.12)
sin @ == sin &’ sin &y — cos @' cos Gy cos )\, (A.13)
cos 6 sin{A — Ag) ==cos & sin A’. (A.14)

(iven the coordinates of a point 1n the unrotated coordinate system (A, &), the first two
of these give the corresponding coordinates in the rotated coordinate system (), 8).
Taking the total derivative of the third, using (A.14) and the definition of velocity
components, and noting that v = d8’/dr = 0 for the vortex, gives

dé _
V== e (8') cos By sin(h — Ap), (A.15)

where w{f’) is defined by (30). Similarly, differentiating (A.12) and using (A.15) gives
dA
U == COS :‘95 = (0"} {sin Gy cos & — cos fp cos{r — Ag) sinH} . (A.16)

Summarizing, to obtain u, v and v at a point (A, 8) on the unrotated mesh:

¢ Compute the corresponding coordinates in the (A’, ') system using (A.11)-
(A.12).

o Compute v and u from (A.15)—(A.16), where w(8’) is defined by (30).

o Compute ¢ from (29), where p(6’) and w(8”) are defined by (26) and (30).
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