Tracking of Merging and Splitting Objects with Application to Storm Data

Curtis Storlie

Department of Statistics, Colorado State University, and Geophysical Statistics Project, NCAR

About Me

- PhD Student at Colorado State University
 - Plan to graduate spring of 2005
- Supported by NCAR since summer of 2003
 - Work with atmospheric scientists on tracking storms
 - Work with physicists on tracking turbulence structures
- Doug Nychka is a co-advisor on my committee

The Problem

- What is the Underlying Problem?
 - to better understand the dynamics of turbulance
 - to better understand how storms form and evolve over time
 - to validate and improve the storm activity in GCM's (General Circulation Models)
- What is My Part?
 - detect and track vortices in turbulance simulations
 - detect and track storm activity in a doppler radar images
 - detect and track storm activity in GCM output

Outline

- Description of the tracking problem
- The approach to solve the tracking problem
 - 1. description of the model
 - 2. likelihood examples
- Further Work

The Tracking Problem

ullet Given n frames from a sequence of images, find a correspondence between objects from different frames

time = 1 time = 2 time = 3 time = 4

1 2 3 3 3 4 4 4 $\boxed{1}$ 1 2 2 3 $\boxed{3}$ 1 3 $\boxed{4}$

All Times

The Solution

The Tracking Problem Reloaded

• Now there is birth, missing values, and splitting

time = 1

time = 2

time = 3

time = 4

1

1

1

2

2

2

3

3

3

4

4(4

4

All Times

The Solution

Solving the Tracking Problem

- We will assume a statistical model for the objects to be tracked.
- The solution to the tracking problem is the set of paths that maximize the likelihood of this model.
- Our model must account for the possibility of not observing an object at a given time for any of the following reasons
 - 1. It doesn't exist yet (Birth)
 - 2. It no longer exists (Death)
 - 3. It became 2 new paths (Splitting)
 - 4. It coalesced with another path (Merging)
 - 5. It is not found by the detection procedure (Missing)

A Statistical Model

The model is broken up into the following parts

- State Model
 - describes when birth, death, splitting and merging occur
- Missing State Model
 - describes when an existing path is missing (W = 0) or observable (W = 1). It is a continuous time Markov Chain $0 \leftrightarrow 1$.
- Object Size and Orientation
 - treat each object as an ellipse and model the radii (R_1, R_2) as lognormal and the angle of orientation (θ) as VonMises
- Object Location
 - When objects exist, the (X,Y) coordinates are assumed to behave like integrated brownian motion

State Model

- This is a Hidden Model in the sense that the states are not directly observed from the data
- Continuous Time Markov Chain
 - 1. Births occur with rate λ_1
 - 2. Deaths occur with rate $N(t)\lambda_2$
 - -N(t) is the number of paths in existence at time t
 - 3. Splits occur with rate $N(t)\lambda_3$
 - 4. Mergers occur with rate $N(t)\lambda_4$
 - 5. Births of a false alarm paths occur with rate ρ_1
 - 6. Deaths of a false alarm paths occur with rate $N_f(t)\rho_2$
 - $-N_f(t)$ is the number of false alarms in existence at time t

State Model

- The variables p, ξ , and ζ describe the state model
 - p_i is a vector of the parents of the i^{th} path
 - $-\xi_i$ is the time of initiation of the i^{th} path
 - $-\zeta_i$ is the time of termination of the i^{th} path
- $p = (p_1, ..., p_M), \xi = (\xi_1, ..., \xi_M) \text{ and } \zeta = (\zeta_1, ..., \zeta_M)$
- We observe the process at the times $\underline{T} = (T_1, \dots, T_n)$ and M is the number of paths and false alarms that exist before time T_n

Model Likelihood

- We can write out a likelihood for $\Phi = (\boldsymbol{p}, \boldsymbol{\xi}, \boldsymbol{\zeta}, \boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{R}_{(1)}, \boldsymbol{R}_{(2)}, \boldsymbol{\theta})$
 - The bold variables denote the collection of those variables for all paths at all times
- It factors into several conditional densities

$$egin{aligned} \left[\Phi
ight] &= \left[oldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{H}\midoldsymbol{W},oldsymbol{R}_{1},oldsymbol{R}_{2}
ight] \ &= \left[oldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{H}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]\cdot\left[oldsymbol{W}\midoldsymbol{p},oldsymbol{\xi},oldsymbol{\zeta},oldsymbol{W}
ight]$$

• Each of the densities can be written out seperately

Example 1: A Merging Event

Maximizing the likelihood is a reasonable way to find the solution.

Example 2: A Merging and Splitting Event

Example 3: A Crossing Event

Further Work

- Parameter Estimation
- Apply the tracking algorithm to simulated data
- Apply the tracking algorithm to Dopplar Radar Rainfall Data
- Theory
 - convergence to the correct path correspondence
 - Error rate of path classification
- Apply algorithm to 2-D turbulence problem

Missing State Model

- The State Model accounts for everything except missing observations
- Use another Markov Chain with state variable, W, that has only 2 states, missing (W(t) = 0) and observable (W(t) = 1)

Object Size and Orientation

- Model the radii, $R_{1,i}$ and $R_{2,i}$, of the best fitting ellipse to the i^{th} object with lognormal distributions
- Also model the orientation, θ_i with a VonMises distribution.

Object Location

- We will present the model for each of the 4 cases
 - 1. Path resulting form a birth
 - 2. Path resulting from a split
 - 3. Path resulting from a merger
 - 4. False alarm
- Let $X_i(t)$ be the x-coordinate of the i^{th} path at time t
- The model for $Y_i(t)$ will be identical and independent of $X_i(t)$
- Recall p_i contains the indices of the parents of the i^{th} path

Object Location (Birth)

• The location of a path resulting from birth is described by

$$X_{i}(t) = X_{i}(\xi_{i}) + X'_{i}(\xi_{i})(t - \xi_{i}) + \sigma_{i}Z_{i}(t - \xi_{i})$$

- $X'_i(t)$ is the velocity of the path at time t
- $Z_i(t)$ is an IBM, $Z_i(t) = \int_0^t B_i(s) ds$, where $B_i(t)$ is the Brownian Motion driving the i^{th} path
- For the initial position and velocity

$$X_i(\xi_i) \sim N\left(\mu_{X_0}, \sigma_{X_0}^2\right) \text{ and } X_i'(\xi_i) \sim N\left(\mu_{X_0'}, \sigma_{X_0'}^2\right)$$

Object Location (Split)

• The location of a path resulting from a split is described by

$$X_{i}(t) = X_{p_{i,1}}(\xi_{i}) + \phi_{i} + \left[X'_{p_{i,1}}(\xi_{i}) + \phi'_{i}\right](t - \xi_{i}) + \sigma_{i}Z_{i}(t - \xi_{i})$$

- $\phi_i \sim N(0, \sigma_{X_s}^2)$ and $\phi_i' \sim N(0, \sigma_{X_s'}^2)$
- Conservation of momentum condition during a split
 - Let c_i contain the indices of the paths involved in the i^{th} splitting event, $i = 1, ..., N_s$. $c_{i,1}$ is the parent.
 - Change in momentum after the i^{th} split is

$$C_i = ES_{c_{i,2}}X'_{c_{i,2}}(\xi_{c_{i,2}}) + ES_{c_{i,3}}X'_{c_{i,3}}(\xi_{c_{i,2}}) - ES_{c_{i,1}}X'_{c_{i,1}}(\xi_{c_{i,2}})$$

- Condition the model on $C_i = 0$ for $i = 1, \ldots, N_s$

Object Location (Merger)

• The location of a path resulting from merger is described by

$$X_{i}(t) = \frac{ES_{p_{i,1}}}{ES_{i}} X_{p_{i,1}}(\xi_{i}) + \frac{ES_{p_{i,2}}}{ES_{i}} X_{p_{i,2}}(\xi_{i}) + \left[\frac{ES_{p_{i,1}}}{ES_{i}} X'_{p_{i,1}}(\xi_{i}) + \frac{ES_{p_{i,2}}}{ES_{i}} X'_{p_{i,2}}(\xi_{i})\right] (t - \xi_{i}) + \sigma_{i} Z_{i}(t - \xi_{i})$$

- Conservation of momentum is built into the term in brackets
- Need to force the paths close together before merger
 - Let d_i contain the indices of the paths involved in the i^{th} merging event, $i = 1, ..., N_m$. $d_{i,1}, d_{i,2}$ are the parents.
 - Difference in location before the i^{th} merger plus an error is

$$D_i = X_{d_{i,1}}(\xi_{d_{i,3}}) - X_{d_{i,2}}(\xi_{d_{i,3}}) + \psi_i$$

where $\psi_i \sim N(0, \sigma_{X_m}^2)$

- Condition the model on $D_i = 0$ for $i = 1, \ldots, N_m$

Object Location (False Alarm)

• The location of a false alarm path is described by

$$X_i(t) = X_i(\xi_i) + \sigma_i B_i(t - \xi_i)$$

• The initial position follows the same distribution as that for a true path

$$X_i(\xi_i) \sim N\left(\mu_{X_0}, \sigma_{X_0}^2\right)$$