
Advances and Applications in Perfect Sampling

by

Ulrike Schneider

M.S., University of Vienna, Austria, 1999

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2003

This thesis entitled:
Advances and Applications in Perfect Sampling

written by Ulrike Schneider
has been approved for the Department of Applied Mathematics

Jem Corcoran

Anne Dougherty

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

Schneider, Ulrike (Ph.D., Applied Mathematics)

Advances and Applications in Perfect Sampling

Thesis directed by Prof. Jem Corcoran

Perfect sampling algorithms are Markov Chain Monte Carlo (MCMC) methods

without statistical error. The latter are used when one needs to get samples from

certain (non-standard) distributions. This can be accomplished by creating a Markov

chain that has the desired distribution as its stationary distribution, and by running

sample paths ”for a long time”, i.e. until the chain is believed to be in equilibrium. The

question ”how long is long enough?” is generally hard to answer and the assessment of

convergence is a major concern when applying MCMC schemes. This issue completely

vanishes with the use of perfect sampling algorithms which – if applicable – enable exact

simulation from the stationary distribution of a Markov chain.

In this thesis, we give an introduction to the general idea of MCMC methods

and perfect sampling. We develop advances in this area and highlight applications

of these advances to two relevant problems.

As advances, we discuss and devise several variants of the well-known Metro-

polis-Hastings algorithm which address accuracy, applicability, and computational cost

of this method. We also describe and extend the idea of slice coupling, a technique

which enables one to couple continuous sample paths of Markov chains for use in perfect

samplingalgorithms.

As a first application, we consider Bayesian variable selection. The problem of

variable selection arises when one wants to model the relationship between a variable

of interest and a subset of explanatory variables. In the Bayesian approach one needs

to sample from the posterior distribution of the model and this simulation is usually

carried out using regular MCMC methods. We significantly expand the use of perfect

iv

sampling algorithms within this problem using ideas developed in this thesis. As a

second application, we depict the use of these methods for the interacting fermion

problem. We employ perfect sampling for computing self energy through Feynman

diagrams using Monte Carlo integration techniques.

We conclude by stating two open questions for future research.

v

Acknowledgements

Well ... it’s been great. Was I asked to summarize the past four years in one

sentence, I would probably come up with something along the lines of “I never thought

that getting a Ph.D. could be so much fun.” And I am serious about that!

Being a little lost after my first year, my research interests started to take better

shape when I took Anne’s Markov chain class in the fall of 2000. It was in this course

that I stumbled out of the deterministic world and into a stochastic universe, where I

ran into “way cool” things, such as perfect sampling – which became the topic of my

thesis. In a run of good luck, along with this exciting research area came the perfect

advisor, who guided, supported, and encouraged me throughout the process. Thank

you for everything, Jem!

I found that the Applied Math department provided a truly friendly and safe

atmosphere for me to grow professionally. I enjoyed sharing offices, discussing homework

problems, research topics and many, many other things with great people – including

Rian, Scott, Dave, Stefan, Paul, Neil, and Dan. You played a big part in making me

feel at home.

Many patiently put up with me during the last month before my defense – espe-

cially Jem, my officemates, and Christophe. A big “thank you” also goes to Reinhard

for reading through my entire thesis.

And finally, I want to mention “everybody” back home, my family and my friends,

who didn’t forget me (and even came to visit) as I moved away thousands of miles to

go to grad school ... thank you!

Contents

Chapter

1 Introduction 1

1.1 Monte Carlo Methods . 1

1.2 Markov Chain Monte Carlo Methods . 2

1.2.1 Everything is Metropolis-Hastings! 3

1.2.2 The Drawback . 3

1.3 Perfect Sampling . 4

1.4 About This Thesis . 5

2 Perfect Sampling 7

2.1 Illustration of the Basic Idea . 7

2.2 Extensions to Infinite and Continuous State Spaces 12

3 Using the Metropolis-Hastings Chain 14

3.1 Introduction . 14

3.2 The Metropolis-Hastings Algorithm . 15

3.3 The IMH Chain . 16

3.3.1 The Perfect IMH Algorithm . 17

3.3.2 Bounded IMH – step (3) (a)′ . 19

3.4 Variants on the IMH algorithm . 19

3.4.1 An “Approximate Perfect” Algorithm 21

vii

3.4.2 An Adaptive IMH Algorithm . 28

4 Slice Coupling Methods 40

4.1 Introduction . 40

4.2 The Folding Coupler . 42

4.2.1 The Uniform Distribution . 42

4.2.2 Other Distributions - Using Slice Coupling 43

4.2.3 Common draws from N(µ, σ2
1) and N(µ, σ2

2) 44

4.3 The Layered Multishift Coupler . 47

4.3.1 The Uniform Distribution . 47

4.3.2 Common Draws from N(µ1, σ
2) and N(µ2, σ

2) 48

4.3.3 Non-invertible distributions . 49

4.4 The Shift and Fold Coupler . 54

4.4.1 Common Draws from N(µ1, σ
2
1) and N(µ2, σ

2
2) 54

4.4.2 Coupled Gamma Random Variates 55

4.5 Coupling Sample Paths in Perfect Sampling 55

4.5.1 The Auto-Exponential Distribution 55

4.5.2 The Auto-Gamma Distribution 65

4.5.3 Storage Model . 70

5 Bayesian Variable Selection in a Linear Regression Model 74

5.1 Introduction . 74

5.2 The Problem of Variable Selection . 75

5.2.1 The Goal . 75

5.2.2 The Priors . 76

5.3 Perfect Simulation From the Posterior 76

5.3.1 Fixed Variance, Fixed Coefficients 76

5.3.2 Random Variance, Fixed Coefficients 80

viii

5.3.3 Random Variance, Random Coefficients 84

5.4 Simulation Results . 86

5.4.1 Fixed Variance, Fixed Coefficients 87

5.4.2 Random Variance, Fixed Coefficients 88

5.4.3 Fixed Variance, Random Coefficients 89

5.4.4 Random Variance, Random Coefficients 89

5.5 Testing on the Hald Data Set . 90

6 Perfect Stochastic Summation in High Order Feynman Graph Expansions 93

6.1 Introduction . 93

6.2 Self Energy, Feynman Diagrams, and Computer-Friendly Representation 95

6.2.1 Self Energy and Feynman Diagrams 96

6.2.2 Computer-Friendly Representation 102

6.3 Monte Carlo Summation . 106

6.4 Perfect IMH in the Context of this Self Energy Problem 107

6.4.1 The Monte Carlo Sum . 109

6.4.2 The IMH Algorithm . 110

6.4.3 Estimating NW . 112

6.4.4 Extending the M-Space . 112

6.5 Simulation Results . 113

6.6 Addressing the Low-Score Problem . 119

6.6.1 Conditional Averaging . 119

6.6.2 Using IMH Step 3(a)′ . 121

7 Conclusions 127

7.1 Summary . 127

7.2 Future Research . 127

7.2.1 Analytical Bounds for the AIMH algorithm 128

ix

7.2.2 Towards a Multistage Coupler for the IMH Algorithm 128

Bibliography 131

Appendix

A Gibbs Sampling 135

B Hierarchical Sampling 137

B.1 Sampling Scheme . 137

B.2 Validity . 137

Tables

Table

4.1 Estimated Probabilities of the Auto-Exponential Distribution 61

4.2 Estimated Probabilities of the Auto-Gamma Distribution 70

5.1 Results for 1000 Draws for Fixed Variance and Fixed Coefficients 87

5.2 Results for 1000 Draws for Random Variance and Fixed Coefficients . . 88

5.3 Results for 100 Draws for Fixed Variance and Random Coefficients . . . 89

5.4 Results for 100 Draws for Random Variance and Random Coefficients . 90

5.5 Results for 100 Draws for the Hald Data 92

6.1 Summary of Symbols . 103

6.2 Number of Irreducible Feynman Diagrams of Different Orders 105

6.3 Estimated Probabilities for Example 1 115

6.4 Estimated Values of σ2(k) Based on Various Sample Sizes 117

6.5 Estimated Values for σ2(k) Using the IMH Algorithm 117

6.6 Estimated Values for σ2(k) Using Conditional Averaging 122

6.7 Estimated Values of σ2(k) Using the Modified IMH Algorithm 125

Figures

Figure

2.1 The Coupling of Two Paths of a Markov Chain 8

2.2 Illustration of Perfect Sampling . 10

2.3 Running Parallel Chains Forward . 11

3.1 An Overdispersed Candidate Density . 17

3.2 Illustration of the IMH Algorithm . 20

3.3 Comparison of an Approximate to a Regular IMH Algorithm – Ex. 1 . . 24

3.4 Comparison of an Approximate to a Regular IMH Algorithm – Ex. 2 . . 25

3.5 Comparison of an Approximate to a Regular IMH Algorithm – Ind. Max. 27

3.6 The Target and Candidate Densities . 30

3.7 100,000 Draws from the Target Density Using Metropolis-Hastings . . . 31

3.8 Histogram Output of the Metropolis-Hastings Algorithm 33

3.9 100,000 Draws from π After 100 Time Steps 37

3.10 Adaptive IMH – Refinement 1 . 38

3.11 Adaptive IMH – Refinement 2 . 39

4.1 Illustration of the Folding Coupler for Uniform Distributions 43

4.2 Illustration of the Folding Coupler for N(µ, σ2
1) and N(µ, σ2

2) 46

4.3 gX(1; 1, 3) for X ∼ Uniform(1, 3) . 49

4.4 gX(1; 0.9, 3.2) for X ∼ Uniform(1, 3) . 50

xii

4.5 Patching the Gap . 51

4.6 Illustration of The Shift-and-Patch Algorithm 52

4.7 Common Draws for Γ(3, 2) and Γ(2, 3) using Shift and Fold 56

4.8 Histogram of the Marginal in X1 of the Auto-Exponential Distribution . 62

4.9 Histogram of the Marginal in X2 of the Auto-Exponential Distribution . 63

4.10 Backward Coupling Times for to the Auto-Exponential Distribution . . 64

4.11 Histogram of the Marginal in X1 of the Auto-Gamma Distribution . . . 71

4.12 Histogram of the Marginal in X2 of the Auto-Gamma Distribution . . . 71

4.13 Relative Shapes for Two Densities f z
Y (y) 73

6.1 The Hubbard Model . 97

6.2 Representing a Green’s Function with Free Propagators 98

6.3 Representing Self Energy as a Sum of Feynman Diagrams 99

6.4 Feynman Diagrams . 100

6.5 Representing a Feynman Diagram as a Linkage List 104

Chapter 1

Introduction

This thesis is about methods in stochastic simulation, more precisely about exact

(perfect) sampling methods for Markov chain Monte Carlo (MCMC) algorithms. So,

what is MCMC and how does perfect sampling fit into the picture? The following

sections describe some of the history and fundamental ideas behind these techniques.

1.1 Monte Carlo Methods

The initial motivation for the development of MCMC methods was for the use

in Monte Carlo methods in statistical physics. Monte Carlo methods can be described

to “encompass any technique of statistical sampling employed to approximate solutions

to quantitative problems” [40]. The idea of exploiting random events for numerical

computations has been used long before its use in statistical physics and has been

documented, for example, in 1873, when Hall [29] published his attempts to estimate

the number π by throwing needles on a sheet of graph paper.

While the Monte Carlo method is credited to John von Neumann and Stanislaw

Ulam, it was presented systematically for the first time when Nicolas Metropolis and

Stanislaw Ulam published their famous paper “The Monte Carlo Method” [36] in 1953.

The name “Monte Carlo” was inspired by the city of Monte Carlo in the principality of

Monaco, famous for its gambling houses and source of many random number generators,

such as the roulette wheel.

2

More formally, the idea of Monte Carlo can be illustrated by the following exam-

ple. Assume we would like to approximate the (deterministic) integral

∫

A
g(x) dx.

We rewrite this integral as

∫

A

g(x)

f(x)
f(x) dx with

∫

A
f(x) dx = 1

and observe that it can be interpreted as

E[
g(X)

f(X)
], where X ∼ f(x).

Then, by the Central Limit Theorem, we can approximate the desired quantity by

n
∑

i=1

g(Xi)

f(Xi)
, where Xi

iid∼ f(x).

(We describe this idea in more detail in Section 6.3.)

There are countless ways to interpret an integral as an expected value and usu-

ally the induced distribution from which we need to sample is non-standard. MCMC

methods were introduced for the purpose of simulating the required values Xi ∼ f(x).

1.2 Markov Chain Monte Carlo Methods

Robert and Casella [48] give the following definition:

A Markov chain Monte Carlo (MCMC) method for the simulation of a
distribution f is any method producing an ergodic Markov Chain (X (t))
whose stationary distribution is f .

MCMC methods essentially have two different applications. One is to assume a

given distribution from which we wish to simulate and to “artificially” create a Markov

chain that is designed to have the desired distribution as its stationary measure.

3

The other implementation concerns starting with a Markovian process given by

a transition law and wishing to obtain samples from the (unknown) stationary distri-

bution. In this thesis, we focus on the first approach, although we give an example in

Section 4.5.3 where we use the second implementation.

1.2.1 Everything is Metropolis-Hastings!

As mentioned above, MCMC evolved with the object of sampling from a given

distribution. The main MCMC chain for this purpose is the Metropolis-Hastings chain

with cleverly designed transition updates which ensure that the target distribution is

indeed the stationary distribution of the process. This algorithm was first introduced

by Metropolis and Ulam [36] in the above mentioned paper and was later generalized

by Hastings [30] in 1970. Another commonly used algorithm is the Gibbs sampler due

to Geman and Geman [21] in 1984 and Gelfand and Smith [19] in 1990. While there are

many ways to construct MCMC chains that will converge to the desired distribution,

all of them (including the Gibbs sampler) are special cases of the general Metropolis-

Hastings framework.

MCMC methods have had an enormous practical impact since the 1970’s as they

provide a large scope for statistical modeling. They have proven to be effective in

areas such as spatial statistics, image analysis, Bayesian statistics, operations research,

economics, and many others.

1.2.2 The Drawback

Implementing MCMC is based on the following concept. Since we have a Mar-

kov chain with a given transition law and would like to simulate from its equilibrium

distribution, say, π, a natural procedure is to start the chain at some value at time

t = 0, to move forward according to the transition probabilities, and to stop after a

“reasonable” number of time steps. Of course, if we wanted to make sure that the

4

samples are distributed according to π, we would have to move forward to time t =∞!

Thus the simulator has to settle for approximate samples, stopping the chain after a

certain amount of time steps which is assumed to be “sufficient”.

But . . . how long is “long enough”? What is a “reasonable” number of time

steps? When is the sample “close enough” to π? These questions are generally hard to

answer and the assessment of convergence can be a major concern in the use of MCMC

methods.

1.3 Perfect Sampling

The issue of convergence that appear in regular MCMC methods vanishes com-

pletely with the use of perfect simulation algorithms.

Perfect sampling is MCMC without statistical error!

Perfect sampling (perfect simulation, exact simulation, backward coupling, cou-

pling from the past or CFTP) algorithms enable exact simulation of the invariant (or

stationary) measure π of a Markov chain, either exactly (that is, by drawing a random

sample known to be from π) or approximately, but with computable order of accuracy.

These were sparked by the seminal paper of Propp and Wilson [46] in 1996, and several

variations and extensions of this idea have appeared since.

The essential idea of these approaches is to find a random epoch −T in the past

such that, if we construct sample paths (according to a transition law of the chain that

is invariant for π) from every point in the state space starting at −T , then all paths will

have coupled successfully by time zero. The common value of the paths at time zero is

a draw from π. Intuitively, it is clear why this result holds with such a random time T .

Consider a chain starting at −∞ with the stationary distribution π. At every iteration

it maintains the distribution π. At time −T it must pick some value x, and from then

on it follows the trajectory from that value. But of course it arrives at the same place

5

at time zero no matter what value x is picked at time −T , so that the value returned

by the algorithm at time zero must itself be a draw from π. This idea will be discussed

in further detail in Chapter 2.

1.4 About This Thesis

In this thesis we deal with advances of perfect sampling methods and present two

relevant problems where we apply these techniques.

While there was a large boom in the development of perfect simulation algorithms

after Propp and Wilson’s article [46] in 1996, the progression of theory in this area has

slowed down since then and the attention has been turned to applications of these

schemes. Applying perfect sampling procedures is a non-trivial task and the current

challenge has shifted towards depicting how these methods may be used in specific

problems.

We present our advances in Chapter 3 and Chapter 4 and describe the two

applications in Chapter 5 and Chapter 6. More specifically, this thesis is outlined as

follows.

Chapter 2 is a tutorial chapter on perfect simulation with a brief review on some

of the existing literature.

We discuss the Metropolis-Hastings chain in detail in Chapter 3 and present an

existing perfect version, the perfect IMH algorithm. We provide some new observations

that allow to apply this method to the problems described in Chapter 5 and Chapter 6.

We also specify a (non-perfect) adaptive Metropolis-Hastings scheme that, due to its

adaptive nature, appears to converge very rapidly to the desired distribution. Also see

[7].

In Chapter 4 we describe and develop a variation of the layered multishift coupler

due to Wilson that allows one to obtain potentially common draws from two different

6

distributions. Our main application is coupling sample paths of Markov chains for

use in perfect sampling algorithms and we apply this technique in Chapter 5. We

present several variants of this idea, discuss implementation issues, and illustrate these

methods with examples such as simulating from a storage model and the auto-gamma

distribution. Also see [8].

We illustrate the use of perfect sampling algorithms for Bayesian variable selec-

tion in a linear regression model in Chapter 5. Starting with a basic case solved by

Huang and Djurić (2002), where the model coefficients and noise variance are assumed

to be known, we generalize the model step by step to allow for other sources of random-

ness. We specify perfect simulation algorithms that solve these cases by incorporating

various techniques including Gibbs sampling, a variant of the perfect IMH algorithm

from Chapter 3, and slice coupling algorithms from Chapter 4. Applications to simu-

lated data sets suggest that our algorithms perform well in identifying relevant predictor

variables. We also show results for a real data set. Also see [52].

Another application of the IMH algorithm from Chapter 3 is considered in Chap-

ter 6 where we estimate self energy of the interacting fermion model via Monte Carlo

summation. Simulations suggest that the algorithm in this context converges extremely

rapidly and results compare favorably to true values obtained by brute force computa-

tions for low dimensional toy problems. A variant of the perfect sampling scheme which

improves the accuracy of the Monte Carlo sum for small samples is also given. Also see

[9].

We conclude this thesis in Chapter 7 where we give a summary over previous

chapters and tie up loose ends by stating ideas for future research.

Appendix A contains a description of the Gibbs sampler which is used several

times throughout this thesis. Appendix B concerns hierarchical sampling , used in

Chapter 5.

Chapter 2

Perfect Sampling

This chapter contains a description of perfect sampling and a literature review

of advances in this area. We also refer the reader to D.B. Wilson’s website [59] which

contains many links to research papers and even an FAQ page for perfect sampling!

Tutorials can be found, for example, by Robert and Casella [4] and Thönnes [55].

2.1 Illustration of the Basic Idea

As introduced in Chapter 1, perfect sampling, if applicable, enables exact simu-

lation from the stationary measure of a Markov chain with a given transition law.

Markov Chains

A Markov chain {Xt} with state space X is a stochastic process on X, indexed

over time (for illustration purposes, we assume t ∈ IN), which satisfies

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0), xi ∈ X, i = 1, . . . , n. (2.1)

(2.1) is known as the Markov property and essentially states that the distribution of

future states is completely determined by the present state of the chain. The right hand

side of (2.1), specified for all states, constitutes the transition rule of {Xt}. The station-

ary distribution of the process is one that is invariant with respect to the transition rule,

meaning that if the chain is in its stationary distribution, the updates given by (2.1)

will preserve that distribution. We will consider only Markov chains that will converge

8

to their unique stationary distribution over time. The specific class of chains that are

of interest to us is discussed in more detail below.

MCMC and Perfect sampling

While in regular MCMC methods, one chain is started at some value at time

t = 0 (and run forward for a certain number of time steps according to the transition

rule of the chain), in perfect sampling, we can think of starting parallel chains in each

state of the state space.

Essentially, these chains are run as if they were started at time t = −∞ and

stopped at time t = 0. Fortunately, this can also be done in finite time for certain

Markov chains as discussed below.

An important observation for understanding perfect simulation is the idea of

coupling sample paths of Markov chains. Once the paths of two (or more) parallel

chains meet, they will, due to the Markov property, coincide from then on. We say that

the chains have coupled or coalesced , and the time when this occurs is called a forward

coupling time. Figure 2.1 illustrates this.

time
T

Figure 2.1: Two paths of a Markov chain coalesce at the forward coupling time T .

9

The basic structure of the perfect simulation procedure that underlies all of these

algorithms is given in the following description.

We start parallel chains in all states of the state space at time t = −1 and check

whether all paths have met at time t = 0. If this is not the case, we start parallel chains

again at t = −2 and determine whether all paths have coupled by time t = 0, and so

on. This is repeated for starting points successively further in the past until coalescence

occurs for all chains by time t = 0. We call the time t = T in the past that guarantees

that all chains have coupled by time t = 0 a backward coupling time.

The pictures in Figure 2.2 illustrate this procedure. They show an example of

using perfect sampling to obtain one draw from the stationary distribution of a Markov

chain with state space X = {s1, s2, s3, s4} containing four elements. The vertical axis

represents X and the horizontal axis displays the backwards time t. Coalescence occurs

after going back T = −3 time steps.

Look at the last picture in Figure 2.2 and think of the chain having started

stationary (in some state) at time t = −∞. Then, by time t = −3 it will be one of the

four possible states and therefore necessarily end in state s2 at time t = 0. Hence s2

represents a draw from the stationary distribution.

Note that it is essential to append on to previous sample paths or to reuse random

numbers. Assume, for example, that we run sample paths forward from time t = −1

to time t = 0 using a random number (or random vector) u−1, and suppose that these

paths have not coalesced at time 0. We then need to go back an additional time step

to start sample paths at time t = −2 and run the paths forward to time t = 0. In order

to carry out these transitions, we use a random number (or random vector) u−2 for the

transition from t = −2 to t = −1 and the previously used u−1 for the update from

t = −1 to t = 0. This is also demonstrated in Figure 2.2.

10

�

�

�

�

�

� �

�

�
�
�
�
� �

�
� �

�
� �

T = −1 : no coalescence at t = 0.

s4

s3

s2

s1

-3 -2 -1
t

u
−1

�

�
�

�

�

�

�

�

�

�

�

�
� �

�
� �

�
� �

�
� �

�
� �

T = −2 : no coalescence at t = 0.

s4

s3

s2

s1

-3 -2 -1
t

u
−1u

−2

�

�
�

�

�

�

�

� �

�

�

�
� �

�
� �

�
� �

�
� �

�
� � �

� �
T = −3 : coalescence at t = 0.

Accept state s2 as a draw!

s4

s3

s2

s1

-3 -2 -1
t

u
−1u

−2u
−3

Figure 2.2: Illustration of how perfect sampling works for a 4-state Markov chain.
Coalescence occurs at T = −3 (backward coupling time).

11

Why backwards?

Why not just start chains at t = 0 and go forward in time until they have coalesced

as shown in Figure 2.3?

�

�

�

�

�

�

�

� �

�

�

�
� �

�
� �

�
� �

�
� �

�
� � �

� �

s4

s3

s2

s1

0 1 2 3

t

Forward coupling time T = 3.

Figure 2.3: Running parallel chains forward.

Forward and backward coupling times are different in the sense that the forward

coupling time denotes the actual time of coalescence, whereas the backward coupling

time refers to a time in the past such that by time t = 0, all chains have met. For a

backward coupling time T , coalescence can occur at any time between time t = T and

time t = 0.

If we start the chain according to the stationary measure at time t = 0, it will stay

stationary at all fixed time steps, but since coupling times are random, reporting states

at these times would no longer necessarily represent draws from the desired distribution.

In perfect sampling, we always report draws at the fixed time t = 0!

When does it work?

Let P n(x, .) denote the n-step transition law of the chain and let π be its stationary

measure. Perfect sampling theoretically works for all uniformly ergodic Markov chains,

12

which are defined to be the ones that satisfy

‖P n(x, ·) − π ‖ → 0 as n→∞ (2.2)

uniformly over all x of the state space. The norm ‖·‖ in (2.2) refers to the total variation

norm of a measure which is defined as

‖µ ‖ := 2× sup
A Borel set

|µ(A) |.

Foss and Tweedie [16] show that these chains are exactly the ones that have a

finite backward coupling time with probability 1.

For a Markov chain with a finite state space, uniformly ergodic is equivalent to

the chain being irreducible (essentially meaning that any state can be reached from

any other state in a finite number of time steps) and aperiodic (meaning that all states

have period 1). In that case, a straightforward implementation of perfect simulation

is possible using the procedure described above and we refer the reader to Propp and

Wilson [46] for further details.

For uniformly ergodic chains with infinite or continuous state spaces the challenge

remains to detect a backward coupling time, even if we are assured that it is finite!

The following section lists some ideas for this purpose.

2.2 Extensions to Infinite and Continuous State Spaces

We now describe some ideas to extend the basic idea discussed in Section 2.1 to

infinite and continuous state spaces.

Monotonicity and Bounding Processes

Perfect sampling algorithms can be particularly efficient if the chain is stochasti-

cally monotone, meaning that paths from lower starting points stay below paths from

higher starting points with respect to some partial ordering placed on the state space.

In this case, one only needs to couple sample paths from the “top” and “bottom” of the

13

state space, as all other paths will be sandwiched in between. It is possible to generalize

this concept one step further to monotone chains on an unbounded state space by con-

sidering stochastically dominating processes to bound the journeys of sample paths. For

example, Møller [39] uses this idea to specify an “almost perfect” simulation algorithm

to simulate from the so-called auto-gamma distribution up to a computable order of

accuracy. (We present a perfect method for that purpose in Section 4.5.2.)

Other Ideas

Other and related ideas include Fill’s algorithm [15, 51], minorization criteria in

Murdoch and Green [43], the Harris coupler in Corcoran and Tweedie [10], the horizontal

backward coupling scheme in Foss et al. [17], the IMH algorithm in Corcoran and

Tweedie in [11] (discussed in Chapter 3 and applied in Chapter 5 and Chapter 6), slice

sampling methods in Mira et al. [37], and slice coupling techniques in Corcoran and

Schneider [8] where we present procedures that force continuous sample paths to couple

(this is described in detail in Chapter 4).

Chapter 3

Using the Metropolis-Hastings Chain

3.1 Introduction

The Metropolis-Hastings algorithm [56] allows simulation of a probability density

π(x) which is known only up to a factor, that is, when we have π(x) = ch(x) with

c unknown. Instead of simulating from π directly, the simulator proceeds by drawing

from a candidate or proposal distribution Q with density q(y) and generating transitions

for a discrete-time Markov chain evolving over the state space of π.

In order to sample a value drawn from π, one must generally select a distribution

Q and run a Metropolis-Hastings sample path for “a long time” until it is suspected

that convergence to π has been achieved. We describe this algorithm in more detail in

Section 3.2.

In Corcoran and Tweedie [11], a Metropolis-Hastings based “perfect sampling”

algorithm was introduced based on the backward coupling approach of Propp and Wil-

son [46], eliminating the need to address issues of convergence. A drawback of this

algorithm, described in Section 3.3, is that it is necessary to maximize a certain ratio

of densities. We address this issue in Section 3.4.1, where we implement an “imperfect”

perfect sampling algorithm by using only an approximate maximum in the algorithm

of [11]. Empirical results suggest that it is worthwhile to use the imperfect backward

coupling algorithm even with this introduced error, as it appears to outperform the

traditional forward approach.

15

With a traditional Metropolis-Hastings algorithm, a perfect version, or even an

imperfect perfect version, there remains the issue of choosing a suitable candidate distri-

bution Q. Algorithms with self-targeting candidates exist [54], and in a similar spirit we

introduce an “adaptive” Metropolis-Hastings algorithm in Section 3.4.2. Preliminary

results suggest that this approach considerably speeds up convergence and, in fact, will

converge when the traditional approach fails altogether.

3.2 The Metropolis-Hastings Algorithm

We outline the Metropolis-Hastings algorithm to draw from a distribution with

density π on the state space X by describing the underlying Markov chain of the al-

gorithm. The Metropolis-Hastings Xt chain is defined by the following transition law.

Assume that the chain is currently in state x, that is Xt = x. Then propose a candidate

value y according to the distribution Q with density q ′Y |Xt=x(y|x) = q(y, x) and state

space X and accept the transition to y with probability

α(x, y) =

min
{

π(y)
π(x)

q(x,y)
q(y,x) , 1

}

π(x)q(y, x) > 0

1 π(x)q(y, x) = 0.

Note that the candidate distribution depends on the current state of the chain. If the

candidate draw is accepted, we set Xt+1 = y. If we do not accept, we reject to move to

the suggested value y and obtain Xt+1 = x. This procedure creates a Markov chain on

X with transition density

p(x, y) = q(x, y)α(x, y), y 6= x,

which will remain at the same point with probability

P (x, {x}) =

∫

q(x, y) [1 − α(x, y)] dy.

It is easy to verify that π is the invariant (or stationary) measure for the chain,

see, for example, [26, 48, 49, 5, 50]. Choices for Q and rates of convergence have been

studied extensively in [35, 48], for example.

16

Note that the form of the acceptance probability α(x, y) requires that π and q

need to be known only up to a constant (as long as it is possible to generate samples

from Q).

The original Metropolis algorithm, which was first proposed by Nicolas Metropolis

[36] in 1953, uses a symmetric candidate transition Q for which q(x, y) = q(y, x). In

that case, the acceptance probability α(x, y) can be simplified to

α(x, y) =

min
{

π(y)
π(x) , 1

}

π(x) > 0

1 π(x) = 0.

In 1970, Hastings [30] extended the Metropolis algorithm to a more general proposal

distribution Q as described above.

3.3 The IMH Chain

In this section, we focus on the so-called independent Metropolis-Hastings (IMH)

chain, where we have a given candidate distribution Q which we will assume to have

a density q, and from which we can generate i.i.d. samples. We use the term “in-

dependent” to describe the Metropolis-Hastings algorithm where candidate states are

generated by a distribution that is independent of the current state of the chain. A

candidate value generated according to q is then accepted with probability α(x, y) given

by

α(x, y) =

min
{

π(y)
q(y)

q(x)
π(x) , 1

}

q(y)π(x) > 0

1 q(y)π(x) = 0,

where x is the current state and y is the candidate state.

It is known [35] that the IMH chain has desirable convergence properties (and,

for example, is uniformly ergodic) if there exists a β > 0 such that

q(x)

π(x)
≥ β. (3.1)

17

We call q overdispersed with respect to π if (3.1) holds. This is the case if q is “heavier

in the tails” than π which is illustrated in Figure 3.1.

q(x)

π(x)

Figure 3.1: A candidate density q that is overdispersed with respect to π.

3.3.1 The Perfect IMH Algorithm

In the paragraph on “Monotonicity and Bounding Processes” in Section 2.2 we

briefly explained how certain monotonicity properties can be used to implement perfect

sampling on a continuous state space. We now illustrate how specific monotonicity

features of the IMH scheme can be exploited to find a perfect implementation of the

IMH chain – the resulting IMH algorithm is due to Corcoran and Tweedie [11].

The IMH algorithm uses the ratios in the acceptance probabilities α(x, y) to

reorder the states in such a way that we always accept moves “downwards” to states that

are ranked lower with respect to the ordering. More specifically, if we write π(x) = c h(x)

where c is unknown, we define the IMH ordering

x � y ⇔ π(y)q(x)

π(x)q(y)
≥ 1 ⇔ π(y)

q(y)
≥ π(x)

q(x)
. (3.2)

With this ordering, we can think of the “lowest state” as essentially the one that

is the hardest to move away from when running the IMH algorithm.

18

In fact, the lowest state with respect to the ordering defined in (3.2) is any l ∈ X

which satisfies

π(l)

q(l)
= sup

x∈X

π(x)

q(x)
. (3.3)

This l also guarantees that

α(l, y) ≤ α(x, y) ∀x ∈ X. (3.4)

Thus, if we are able to accept a move from l to a candidate state y

drawn from the distribution Q with density q, then sample paths from every

point in the state space will also accept a move to y, so all possible sample

paths will coalesce.

Note that if such an element l satisfying (3.3) exists, (3.1) also holds and the

underlying chain is uniformly ergodic. Also note that in the above requirements, the

density π can be replaced by h(x) ∝ π(x) with no additional changes for the algorithm.

The perfect sampling algorithm is formally described as follows:

(1) Draw a sequence of random variables Qn ∼ Q for n = 0,−1,−2, . . ., and a

sequence αn ∼ Uniform(0, 1) for n = −1,−2,

(2) For each time −n = −1,−2, . . ., start a lower path L at l, and an upper path,

U at Q−n.

(3) (a) For the lower path: Accept a move from l to Q−n+1 at time −n + 1 with

probability α(l, Q−n+1), otherwise remain at state l. That is, accept the

move from l to Q−n+1 if α−n ≤ α(l, Q−n+1).

(b) For the upper path: Similarly, accept a move from Q−n to Q−n+1 at time

−n + 1 if α−n ≤ α(Q−n, Q−n+1); otherwise remain at state Q−n.

(4) Continue until T defined as the first n such that at time −n+1 each of these two

paths accepts Q−n+1. (Continue the Metropolis-Hastings algorithm forward to

19

time zero using the α’s and Q’s from steps (1) - (3) to get the draw from π at

time zero.)

By monotonicity, the upper path will accept a candidate point whenever the lower

path will, and the two paths will be the same from that time forward. Consequently,

our description of the upper process is a formality only, and, indeed, the upper process

need not be run at all. Figure 3.2 illustrates a realization of the perfect IMH algorithm.

We refer the reader to [11] for details on how one’s choice of Q will affect the

expected backward coupling time for the perfect IMH algorithm.

3.3.2 Bounded IMH – step (3) (a)′

For sampling from complicated densities, we may wish to take advantage of the

observation that neither the lowest state, l, nor the maximum value π(l)/q(l) need be

attained explicitly. If we are able to find a constant C such that

sup
x∈X

π(x)

q(x)
≤ C ∀x ∈ X

then we know that

π(y)

q(y)
C−1 ≤ α(x, y) ∀x ∈ X

so we could modify step (3) (a) of the IMH algorithm to read

(3) (a)′ for the lower path: Accept a move from l to Q−n+1 at time −n + 1 with prob-

ability α(l, Q−n+1), otherwise remain at state l. That is, accept the move from

l to Q−n+1 if α−n ≤ π(Q−n+1)
q(Q−n+1)

C−1.

3.4 Variants on the IMH algorithm

In this section, we present two variants on the IMH algorithm. The first one

addresses the problem of not being able to maximize the π/q, the second one the question

of how to choose a candidate distribution Q.

20

�

�

�

�

�
�

�
�
�
�
�
� �

l

Going backwards: l accepts the

candidate Q−2 at time t = −2.

T = −3 is a backward coupling time.

Q
−2

Q
−1

Q0

-3 -2 -1
t

�

�

�

�
�

� � � �
	 	

	 	

�
�
� �

�
�
�
�
�
� ��� �

� �
X0

Going forward to time t = 0.

All possible paths will be in state

X−2 = Q−2 at time t = −2!

Q
−2

Q
−1

Q0

-3 -2 -1
t

The first graph represents the process of finding a backward coupling time. Dashed lines show
when the lowest state l rejects the given candidate and the chain stays “flat”. Moving from
time t = −3 to time t = −2, l accepts to move to the proposed candidate Q

−2, so any sample
path at that time will accept the to move to Q

−2 (which is illustrated in the second graph).
Starting at time t = −2, the thick lines in the second graph represent the path moving forward
to time t = 0 according to the Metropolis-Hastings updates.

Figure 3.2: A realization of the perfect IMH algorithm with backward coupling time at
T = −3 and exact draw X0.

21

3.4.1 An “Approximate Perfect” Algorithm

Identifying the “lowest point” l for the perfect IMH algorithm can sometimes be

problematic. We now consider an imperfect variant of the perfect IMH algorithm where

we use an approximate value for l. Even though this introduces error into the perfect

IMH algorithm, preliminary empirical results suggest that the method is still superior

to the traditional forward-time Metropolis-Hastings algorithm.

Recall that l is a point that maximizes the ratio

π(x)

q(x)
or, equivalently

h(x)

q(x)
.

We could maximize this with either traditional deterministic methods or stochas-

tic optimization methods – we describe both approaches in this section. We start out

with a random search that may be built into the perfect IMH algorithm at no additional

computational cost. As some may view the built-in approach as too complicated to im-

plement, we also present the obvious approximate perfect IMH algorithm where l is

approximated independently of the backward coupling algorithm as a second approach.

Built-In Maximization

At each time step, we draw a candidate and compute the corresponding π/q-

ratio for the Metropolis-Hastings algorithm. But we can also use this information for

the stochastic search for the maximum of π/q! If we find that the current candidate

improves the current maximum, we update. To ensure progress in this search process,

we go back at least T time steps for each Metropolis-Hastings iteration. After these T

time steps, we stop if either of the following occurred.

(1) We improved the maximum (that implies that we actually drew the current low

point that every state will accept).

(2) Coalescence occurred with respect to the current low point.

22

Otherwise, we go back further (past T) in time until either of the above takes

place.

Algorithm

While the basic idea of the algorithm is very simple, unfortunately, its implemen-

tation is less straightforward.

We present pseudo-code showing that the different blocks of the algorithm can

be collapsed into only two loops. We also wish to alert the reader that while we hope

that the pseudo-code might be useful for someone wishing to implement the algorithm,

we believe that it is too complicated to help in understanding the underlying idea.

We can basically split the algorithm into two parts – a backward and a forward

block.

(1) Backward block

• Initialize max = 0, t = 0, coupled=FALSE.

• While (t > −T) or (not coupled)

∗ t=t-1

∗ Draw a candidate yt ∼ q(x) and ut ∼ Uniform[0, 1].

∗ Set cur = π(yt)
q(yt)

.

∗ If cur > max

– max = cur

– bct = t

– coupled=TRUE

– x = yt

∗ If (t > −T) and (ut < cur/max)

– bct = t

– coupled=TRUE

– x = yt

23

(2) Forward block

• for t = bct− 1 to 1

∗ acc = π(x) q(yt)
q(x)π(yt)

∗ if ut < acc

– set x = yt

Remark Although the algorithm is used when we don’t know the maximum, we still

need to know that it exists – otherwise we are not guaranteed convergence.

Simulation Results

To assess the performance of the approximate IMH algorithm with a built-in max-

imization, we compare the output of this procedure to a regular forward IMH algorithm

with approximately the same computational cost. To do so, we show the histograms of

the draws from both algorithms with the target density superimposed.

In Figure 3.3, we wish to draw from a N(4, 1) distribution using a double expo-

nential candidate with rate 1 as previously specified. After 100,000 draws, the average

backward coupling time was again 70 (the parameter T was set to 5), so the forward

chain was run for 70 time steps for each draw to have comparable computational cost.

We also considered an example where the target (and candidate) density have

bounded support.

π(x) ∝ 1l(0,6) exp{−x}| sin(x) cos(x)|

q(x) ∝ exp{−|x|}.

With these choices (and the parameter T set to 2), after 100,000 draws the average

backward coupling was 5, so we ran the regular IMH algorithm forward for 5 time steps

for each sample. The resulting histograms for the approximate IMH and the forward

IMH algorithm are shown in Figure 3.4.

24

100,000 draws using approx. IMH with built−in max.

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

100,000 draws using forward IMH

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

The target density is N(4, 1) with a double exponential candidate with rate 1. Histograms show 100,000
draws with an approximate IMH algorithm with built-in maximization and a regular Metropolis-
Hastings procedure. The target density is superimposed.

Figure 3.3: Comparison of an approximate IMH algorithm with built-in maximization
to an independent Metropolis-Hastings scheme.

25

100,000 draws using approx. IMH with built−in max.

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

100,000 draws using forward IMH

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

The target density is f(x) ∝ 1l(0,6) exp{−x}| sin(x) cos(x)| with a uniform candidate on (0, 6). His-
tograms show 100,000 draws with an approximate IMH algorithm with built-in maximization and a
regular Metropolis-Hastings procedure. The target density is superimposed.

Figure 3.4: Comparison of an approximate IMH algorithm with built-in maximization
to an independent Metropolis-Hastings scheme.

26

Independent Maximization

For some fixed N , we draw a sequence of values Q1, Q2, . . . , Qn form the distri-

bution Q and approximate the low point by

l̂N = arg max
x∈{Q1,Q2,...,Qn}

h(x)

q(x)

We then proceed with the IMH algorithm as described in Section 3.3.1 using l̂N

in place of l. Ideally, one would watch for a better estimate of l during the evaluation

of h/q ratios in the IMH algorithm. Indeed, it is this advice that forms the basis for

the built-in maximization described in the paragraph below.

We have assumed no knowledge of the structure of π or of h/q. Obviously, if

the region containing the maximizing point can be narrowed down, one should take

advantage of this. One should also take advantage of more sophisticated deterministic

and/or stochastic optimizers. We have presented an approach in the spirit of parsimony,

using only random deviates that must already be computable in order to run the perfect

IMH algorithm.

In Figure 3.5 we compare the output of this approximately perfect algorithm to

that of a traditional forward Metropolis-Hastings algorithm for a N(4, 1) target density

with a double exponential candidate density with rate 1. More precisely, we used

π(x) ∝ exp{−1

2
(x− 4)2}

q(x) ∝ exp{−|x|}.

To approximate the maximum, we simulated N = 1000 values from the candidate

density to compute l̂N . As the average backward coupling time for the approximate

IMH scheme turned out to be 70 after 100,000 draws, we ran a regular IMH chain

forward for 70 time steps for each draw. In this “comparison” of computational cost we

neglect the computational effort that has to be made to maximize π/q as we leave the

choice of this procedure up to the user. Aside from this issue, Figure 3.5 suggests that

27

100,000 draws using approx. IMH with ind. max.

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

100,000 draws using forward IMH

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

The target density is N(4, 1) with a double exponential candidate with rate 1. Histograms show 100,000
draws with an approximate IMH algorithm with an independent maximization procedure and a regular
Metropolis-Hastings procedure. The target density is superimposed.

Figure 3.5: Comparison of an approximate IMH algorithm with independent maximiza-
tion to an independent Metropolis-Hastings scheme.

28

the approximate IMH algorithm does outperform the regular forward implementation.

For both examples the approximate IMH algorithm seems to outperform the

regular forward IMH scheme at comparable computational effort. Moreover, Figure 3.5

seems to be very similar to Figure 3.3 despite the lower computational effort. One

could use standard convergence assessment techniques, e.g. [20, 48, 2, 12] to diagnose

and compare convergence – we leave this for future work.

3.4.2 An Adaptive IMH Algorithm

It is likely that any person who has ever given a presentation on the Metropolis-

Hastings algorithm, perfect or otherwise, has been asked the question:

How do you choose the candidate distribution?

We usually find ourselves giving the unsatisfactory two-part response:

Choose a candidate distribution Q with density q so that:

(1) q is overdispersed with respect to the target density π, and

(2) you are able to simulate (draw) values from Q.

We realize that this is not the most helpful answer. There do, in fact, exist “self-

targeting” approaches such as in Stramer and Tweedie [53, 54], and we now propose, in

a similar spirit, an “adaptive” algorithm that will create a candidate for the user. We

begin with a motivating example.

Suppose we wish to draw values from the distribution with density

π(x) ∝ 1l(0,∞)(x) exp{−x} | sin(x) cos(x)|. (3.5)

29

Let us further suppose that we choose a Γ(5, 1
2) 1 candidate. That is, we will draw

candidate values from the distribution with density

q(x) ∝ 1l(0,∞)(x)x4 exp{−1

2
x}.

In many cases, one can still get decent results from the Metropolis-Hastings al-

gorithm even with a “bad” candidate density. We have chosen the target density (3.5)

since it is a multi-modal example and have chosen a candidate density which not only

fails condition (3.1) but is “very bad” in the sense that the bulk of the mass is far from

that for the target density. Both densities are shown together in Figure 3.6.

In Figure 3.7 we give histograms showing the resulting distribution of values given

by 100,000 draws using a standard Metropolis-Hastings algorithm run forward for 300,

500, 1000, and 2000 time steps.

As expected, we are not achieving convergence to the target distribution. Indeed,

there is not much difference at all between 1000 and 2000 time steps. However, we would

not like to waste the information gained after 300 (or fewer) time steps – as we have at

this point at least made some progress in moving towards the target distribution and we

have certainly begun to capture it’s multi-modal behavior. We propose to start over with

the Metropolis-Hastings algorithm using the output of our previous failed attempt as a

candidate distribution. This involves representing the output of our previous attempt

in the form of a histogram to a desired accuracy (bin width), and drawing values from

this distribution of values. Note that we are now taking the candidate density q to be

a step function that is constant over each bin.

Consider the output after 300 time steps depicted in the upper left plot of Fig-

ure 3.7. Any distribution estimated with a finite sample will have a finite support. In

1 Our notation for the parameters of a gamma distribution follows

X ∼ Γ(α, β) ⇒ X has density f(x; α, β) = 1l(0,∞)(x)
βα

Γ(α)
x

α−1 exp{−βx}.

30

••••••
••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
••••••••
••••••••
••••••••
••••••••
••••••••
••••••••
••••••••
•••••••••
•••••••••
•••••••••
•••••••••
•••••••••
••••••••••
••••••••••
••••••••••
•••••••••••
•••••••••••
••••••••••••
••••••••••••
•••••••••••••
•••••••••••••
••••••••••••••
•••••••••••••••
••••••••••••••••
•••••••••••••••••
•••••••••••••••••••
•••••••••••••••••••••
•••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
•••

••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••
••
••
•••

•••
•••

d
e

n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

The multi-modal density is the normalized target density π. The unimodal density is the
candidate density q.

Figure 3.6: The target and candidate densities.

31

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

300 Time Steps

0 2 4 6 8 10 12
0
.0

0
.2

0
.4

0
.6

0
.8

500 Time Steps

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1000 Time Steps

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

2000 Time Steps

Figure 3.7: 100,000 draws from π(x) ∝ 1l(0,∞)(x) exp{−x} | sin(x) cos(x)| using the
Metropolis-Hastings algorithm with the Γ(5, 1

2) candidate.

32

this particular case, if we were to make a “refinement” to the Metropolis-Hastings algo-

rithm by drawing candidate values from this histogram distribution, we would never get

proposals that are less than 0.4 or greater than approximately 6.0. For this reason, we

must “spread out” the candidate histogram distribution. We illustrate the procedure

with a simplified histogram.

Spreading the Candidate Distribution

Suppose that we are trying to ultimately draw values from a target distribution

with density π with support (0,∞) and that we begin with an independent candi-

date distribution with density q. Let us further suppose that we have already run the

Metropolis-Hastings for some T > 0 time steps and that this has resulted in a sample

with the histogram depicted in Figure 3.8.

We have chosen, in this case, to store the output in a histogram with bin width

0.1. We store this width and the vector of histogram heights:

binwidth = 0.1

histogram = [0.0, 0.0, 2.5, 3.5, 0.0, 3.0, 1.0].

We “spread” this histogram over the entire support set as follows.

(1) For gaps on the left end, we put a mass that is equal to that for the first non-

empty bin encountered when moving from left to right. In this example, the

histogram vector becomes

histogram = [2.5, 2.5, 2.5, 3.5, 0.0, 3.0, 1.0].

(2) For gaps in the middle, we put a mass that is equal to the average mass of the

two surrounding bins. In this example, the histogram vector becomes

histogram = [2.5, 2.5, 2.5, 3.5, 3.25, 3.0, 1.0].

33

0.0 0.2 0.4 0.6 0.8

0
1

2
3

0
1

2
3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.5

3.5

3.0

1.0

Figure 3.8: Output of the Metropolis-Hastings algorithm run for T > 0 time steps with
candidate q.

34

(Note: If there had been more empty bins between the 3.5 and the 3.0, then

they would have all been assigned the height of 3.25.)

(3) We create a “dummy bin” on the right end that, in this case, will represent the

probability of drawing a value greater than 0.7. We do this by putting a mass

equal to that for the last non-empty bin. Our histogram vector becomes

histogram = [2.5, 2.5, 2.5, 3.5, 3.25, 3.0, 1.0, 1.0].

(4) Finally, we renormalize the histogram. In this case, with a bin width of 0.1, the

heights should add up to 10. Since they add up to 19.25, we multiply all values

by 10/19.25 to get

histogram = [1.2987, 1.2987, 1.2987, 1.8182,

1.6883, 1.5584, 0.5195, 0.5195] .

Drawing from the Candidate Histogram Distribution

(1) We begin by turning the histogram heights into probabilities. We create the

vector

probabilities = binwidth× histogram

= [1.2987, 1.2987, 1.2987, 1.8182,

1.6883, 1.5584, 0.5195, 0.5195] .

(2) We select a bin by drawing a random value U1 from the Uniform(0, 1) dis-

tribution. In this case if U1 < 0.12987, we select the first bin. If U1 <

0.12987 + 0.12987, we select the second bin, etc.

(3) (a) If we have selected any bin but the last, we then draw our candidate value

uniformly from within this bin. For example, if we have selected the fourth

35

bin, we draw a value U2 from the Uniform(0, 1) distribution and set

candidate = binwidth× U2 + (4− 1)× binwidth.

(b) If we have selected the last bin, we draw a value from a distribution with

support (c,∞) where c is the upper bound for the original histogram. In

this example, c = 0.7.

We have chosen to use a simple shifted exponential distribution with a rate

1. (This rate was chosen so that this exponential piece of the candidate

extends in a continuous way off of the last bar of the histogram.) In this

case, we draw a value from an exponential distribution with rate 1 that is

shifted 0.7 units to the right.

To summarize, in this example our candidate density is

q(x) =

1.2987 for 0 < x < 0.1

1.2987 for 0.1 ≤ x < 0.2

1.2987 for 0.2 ≤ x < 0.3

1.8182 for 0.3 ≤ x < 0.4

1.6883 for 0.4 ≤ x < 0.5

1.5584 for 0.5 ≤ x < 0.6

0.5195 for 0.6 ≤ x < 0.7

0.5195 e−(x−0.7) for x ≥ 0.7.

We now return to our example.

Example

We will use the adaptive IMH algorithm to draw values from

π(x) ∝ 1l(0,∞) exp{−x} · | sin(x) cos(x)|,

36

using the Γ(5, 1
2) candidate distribution with density

q(x) ∝ 1l(0,∞)x
4e−

1
2
x x > 0

as our starting candidate.

Running a standard Metropolis-Hastings algorithm forward for 100 time steps

produces the distribution of values shown in Figure 3.9. The target density is also

shown. Using the histogram shown in Figure 3.9 as the new candidate density, we

again run the standard Metropolis-Hastings algorithm forward for 100 time steps. The

output is after this refinement shown in Figure 3.10. Finally, using the histogram shown

in Figure 3.10 as the new candidate density, we run the standard Metropolis-Hastings

algorithm forward for 100 time steps. The output is after this second refinement is

shown in Figure 3.11. At this point, it appears, at least visually, that we have achieved

convergence. Assessing convergence for the adaptive IMH algorithm is subject of future

work as noted in Section 7.2.1.

37

0 2 4 6 8 10 12 14

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 3.9: 100,000 draws from π after 100 time steps using Q ∼ Γ(5, 1
2).

38

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 3.10: Refinement 1: 100,000 draws from π after 100 time steps using distribution
depicted in Figure 3.9 as a candidate.

39

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 3.11: Refinement 2: 100,000 draws from π after 100 time steps using distribution
depicted in Figure 3.10 as a candidate.

Chapter 4

Slice Coupling Methods

4.1 Introduction

As illustrated in Section 2.1, perfect sampling methods usually rely on the in-

vestigators’ ability to couple sample paths of a Markov chain. This is often a

non-trivial task, and, in the case of a continuous state space, it may depend on the

development of tedious minorization conditions as in Corcoran and Tweedie [10] and

Murdoch and Green [43]. In this chapter, as an alternative, we describe and develop

variations on the layered multishift coupler due to Wilson [60] that allows one to obtain

potentially common draws from two different continuous distributions.

These common draws are relatively straightforward to accomplish for uniform

distributions through an accept/reject step, for example. The essential idea to achieve

the coupling for non-uniform distribution is to make use of standard slice sampling

ideas which are presented in Section 4.2.2. The final step in slice sampling, even for

non-uniform distributions, requires one to make uniform draws and the basic idea is to

use one of the coupling methods for uniform distributions to carry out this last step.

Wilson [60] has used this idea for his layered multishift coupler (the wording

“layered multishift coupler” is often used synonymously for the uniform coupler as

well as for its extensions to non-uniform distributions). We present additional uniform

coupling ideas that allow one to obtain potentially common draws for more general

classes of distributions, like the folding coupler, shift-and-patch algorithm, and the so-

41

called shift and fold coupler.

This chapter is organized as follows. In Section 4.2, we present the the folding cou-

pler which allows one to draw from two different uniform distributions where the support

of one is contained within the support of the other using a single random number for

both draws. The advantage of this method over an accept/reject step is the following.

The final step in slice sampling where one has to make uniform draws on subsequently

narrower and narrower slices is typically implemented with an accept/reject algorithm

that uses an a priori unknown number of values from a random number generator. In

a perfect simulation setting, it is essential that one organizes and reuses random num-

bers as mentioned in Section 2.1. It has been our experience that newcomers to perfect

simulation have benefited from the streamlined storage and retrieval offered by the fold-

ing coupler. In Section 4.2.3 we illustrate how this can be useful within slice sampling

to achieve common draws from distributions with different scale parameters with the

example of two normal distributions with common means, but different variances.

Section 4.3 discusses Wilson’s layered multishift coupler, which enables one to

sample potentially common values from two distributions with the same shape but with

different locations. This is demonstrated in Section 4.3.2 for two normal distributions

with a common variance but different means. We then extend the procedure to distribu-

tions with non-invertible densities in Section 4.3.3 using the shift-and-patch algorithm.

In Section 4.4, we combine both folding and shifting methods to allow potentially

common draws from distributions that differ both in shape and location such as two

normal distributions with different means and different variances in Section 4.4.1 or

two gamma distributions with different shape and scale parameters in Section 4.4.2.

Finally, we demonstrate in Section 4.5 how the above techniques can be used to

couple sample paths within perfect sampling. We specify algorithms to simulate from

an auto-exponential distribution in Section 4.5.1 (using a folding coupler), from an auto-

gamma distribution in Section 4.5.2 (using an accept/reject step), and a storage model

42

in Section 4.5.3 (using a shift and fold coupler).

4.2 The Folding Coupler

Our goal is to draw a potentially common value from two differently shaped

distributions for the purpose of coupling sample paths of a Markov chain. The folding

coupler requires that only a single random number be generated and is hence a simple

alternative to a more standard accept/reject algorithm that requires an a priori unknown

number of random numbers. This is especially useful in a perfect simulation setting

where one stores and reuses random numbers.

4.2.1 The Uniform Distribution

We begin by defining and illustrating the folding coupler for simple uniform ran-

dom variables. Suppose that we want to generate a random variable X that is uniformly

distributed on the interval [a, b] and another random variable Y that is uniformly dis-

tributed on the interval (c, d) where a ≤ c < d ≤ b. In Section 4.3 we remove the

requirement that (c, d) be contained in (a, b) by combining the folding coupler with

Wilson’s shift coupler [60].

The folding coupler, illustrated in Figure 4.1, proceeds as follows.

(1) Draw a value X ∼ Uniform(a, b).

(2) If X ∈ (c, d), accept this also as a uniform draw from (c, d) and set Y = X.

(3) If X /∈ (c, d), map X onto the interval (c, d) by “folding it in” according to the

function

f(x) = f(x; a, b, c, d) =

x−a
(c−a)+(b−d) (d− c) + c, if x ∈ (a, c)

d− b−x
(c−a)+(b−d) (d− c), if x ∈ (d, b)

(4.1)

and set Y = f(X).

43

�� ��������������������������
��

uniform[a,b] is folded into [c,d]

(a) (b)

o x
a bc d

x

uniform[a,b] is uniform[c,d]

a bc d

Figure 4.1: (a) Step 2 of the folding coupler, (b) Step 3 of the folding coupler

It is routine to show that the resulting Y value will be uniformly distributed on

the interval (c, d) and easy to see that Y = X whenever X ∈ (c, d).

We also have two particular cases that will be of interest when we use this tech-

nique to generate random transitions for Markov chains.

(1) If c = a and d ≤ b (the interval for Y is contained in and left aligned with the

interval for X), then this algorithm will result in draws x, y, where y ≤ x.

(2) If m := (c + d)/2 = (a + b)/2 (the interval for Y is contained in and centered

in the interval for X), then this algorithm will result in a draws x and y, where

|y −m| ≤ |x−m|.

4.2.2 Other Distributions - Using Slice Coupling

We now extend the procedure of Section 4.2.1 to enable us to draw a common

value from other non-uniform distributions.

One way to sample from a distribution is to sample uniformly from the region

under the plot of its density function. To formalize a method for achieving this, we

describe the basis for the slice sampler approach.

Suppose we can draw a value x for a random variable X with density function

π(x) = c · h(x) where the constant of proportionality c is possibly unknown. We then

draw a value Y = y given X = x uniformly over the interval (0, h(x)) and finally draw

44

a value of X ′ uniformly from H(y) where H(y) is defined to be the “horizontal slice”

H(y) = {x|h(x) > y}.

Y has density

fY (y) =

∫ ∞

−∞
fY |X(y|x)π(x)dx

=

∫ ∞

−∞

1

h(x)
1l(0,h(x))(y)π(x)dx

= c

∫

H(y)
dx

= c |H(y)|

and so X ′ has density

fX′(x) =

∫ ∞

−∞
fX′|Y (x|y)fY (y)dy

=

∫ ∞

−∞

1

|H(y)|1lH(y)(x)c |H(y)|dy

= c

∫ h(x)

0
dy

= ch(x)

= π(x).

The final step of the slice sampler requires that one draws uniformly from

a horizontal slice. Using the folding coupler (or another uniform coupler) at

this step allows us to potentially draw a common value for two differently

shaped non-uniform distributions.

We illustrate this approach with the normal distribution.

4.2.3 Common draws from N(µ, σ2
1) and N(µ, σ2

2)

Assume that our goal is to draw from two normal distributions N(µ, σ2
1) and

N(µ, σ2
2) where σ1 > σ2.

45

Let h1(x) and h2(x) be the likelihood (or density) functions for the N(µ, σ2
1) and

N(µ, σ2
2) distributions, respectively.

(1) Draw X1 ∼ N(µ, σ2
1) and, in tandem (using the same random numbers), gen-

erate X2 ∼ N(µ, σ2
2) distribution. In this example, we can simply re-scale and

let X2 = σ2
σ1

X1. See Figure 4.2 (A).

(2) Draw U ∼ Uniform(0, 1) and let Y1 = U · h1(X1) and Y2 = U · h2(X2).

(3) Compute the left and right endpoints for each horizontal slice.

L1 = −σ1

√

−2 log(σ1Y1) + µ L2 = −σ2

√

−2 log(σ2Y2) + µ

R1 = σ1

√

−2 log(σ1Y1) + µ R2 = σ2

√

−2 log(σ2Y2) + µ.

Note that L1 < L2 < R2 < R1 and that the intervals (L1, R1) and (L2, R2) are

both centered at µ. See Figure 4.2 (B).

(4) Draw a value X ∼ Uniform(L1, R1). This uniform distribution is conditional

on the previous steps of this algorithm. Unconditionally, X has the N(0, σ2
1)

distribution. Furthermore,

if X ∈ (L2, R2), then X is uniformly distributed over (L2, R2) and hence the

unconditional distribution of X is N(0, σ2
2) and so we have achieved a common

draw from both normal distributions. See Figure 4.2 (C).

Otherwise, if X /∈ (L2, R2), we will not get a common draw for both normal

distributions, and we finish by drawing from the N(µ, σ2
2) distribution by folding

X ∼ Uniform(L1, R1) onto the interval (L2, R2) according to (4.1).

We note that when X /∈ (L2, R2) at the end of step 4 above, we could instead

finish drawing from N(µ, σ2
2) by independently drawing a uniform on (L2, R2) but our

intention is to use this construction in a specific way to drive transitions of a Markov

chain while preserving Markov and monotonicity properties.

46

Figure 4.2: A common draw from N(µ, σ2
1) and N(µ, σ2

2) using the folding coupler

47

4.3 The Layered Multishift Coupler

The folding coupler of Section 4.2 allows us to draw common values from two

differently shaped distributions. In this section, we describe the layered multishift cou-

pler of Wilson [60] which allows one to draw common values from distributions with

different location parameters. We extend these methods to non-invertible distributions

in Section 4.3.3. In Section 4.4 we will combine folding and shifting methods to enable

common draws from differently shaped distributions and different (but overlapping)

supports.

4.3.1 The Uniform Distribution

We begin by describing the layered multishift coupler of Wilson [60] for the uni-

form distribution.

Let X be uniformly distributed over the interval (L,R) and consider the mapping

g(s) = gX(s;L,R) =

⌊

s + R−X

R− L

⌋

(R− L) + X (4.2)

where b·c is the greatest integer or floor function.

It is easy to see that for any fixed s, g(s) is uniformly distributed over the interval

(s + L, s + R) since

g(s) =

⌊

s + R−X

R− L

⌋

(R− L) + X

=

[(

s + R−X

R− L

)

− frac

(

s + R−X

R− L

)]

(R− L) + X

= s + R− frac

(

s + R−X

R− L

)

(R− L).

Now since
(

s+R−X
R−L

)

is uniformly distributed over the interval (s
R−L , s

R−L +1), the frac-

tional part of this expression is uniformly distributed over the interval (0, 1). Therefore,

from s + R, we subtract a quantity that is uniform over (0, R − L), and we have that

g(s) is uniform over (s + L, s + R).

48

As a result of the truncation provided by the greatest integer function, it is

possible for different values of s to map to the same g(s). Consequently, we can use

this function to draw a common value from both a particular uniform distribution and

a shifted version. Additionally, this transformation is monotone in the sense that for

s1 ≤ s2, it will result in random variables g(s1) ≤ g(s2).

4.3.2 Common Draws from N(µ1, σ
2) and N(µ2, σ

2)

In this section we describe how Wilson [60] extends the procedure of Section 4.3.1

to enable one to draw a common value from other non-uniform distributions with dif-

ferent location parameters using the same slice sampler approach as in Section 4.2.2.

We again illustrate with the normal distribution.

Assume that the goal is to draw from two normal distributions N(µ1, σ
2) and

N(µ2, σ
2) with µ1 < µ2.

Let h(x) denote the N(0, σ2) likelihood function,

(1) Draw a value X from the N(0, σ2) distribution.

(2) Draw a value U from the Uniform(0, 1) distribution. Let Y = U · h(X).

(3) Compute the endpoints of the horizontal slice at Y .

L = −σ
√

−2 log Y

R = σ
√

−2 log Y

(4) Draw a value X = x from the Uniform(L,R) distribution.

(5) Shift this draw by computing x1 = g(µ1) and x2 = g(µ2).

x1 and x2 are values drawn from the N(µ1, σ
2) and N(µ2, σ

2) distributions respectively

and are potentially the same. Again, since g(·) is monotone, this algorithm will result

in draws x1 and x2, with x1 ≤ x2, of the stochastically ordered random variables

X1 ∼ N(µ1, σ
2) and X2 ∼ N(µ2, σ

2).

49

4.3.3 Non-invertible distributions

The final steps (3)− (5) in the multishift coupler require a draw from a horizontal

slice which can be problematic if the distribution is not invertible. Of course one can use

an accept/reject scheme to draw uniformly from an interval with unknown endpoints,

but the true endpoints are still needed for the shift coupler in (4.2). That is, if X is

distributed uniformly on the interval (L,R) but we only have approximate endpoints

L′ and R′ where L′ ≤ L < R ≤ R′ at our disposal, then

g′(s) =

⌊

s + R′ −X

R′ − L′

⌋

(R′ − L′) + X 6∼ Uniform(s + L, s + R). (4.3)

In the following, we assume that L and R are unknown but that one can tell whether

a given point is or is not in the interval (L,R). This is the case, for example, when

slice sampling from a unimodal density as in Section 4.4.2. An accept/reject scheme

can then be used to sample uniformly from (L,R).

The Shift-and-Patch Algorithm

We begin by considering using (4.2) to send draws from a uniform distribution

on (L,R) to (L+ s,R+ s). For a specific example, we take L = 1, R = 3, and s = 1. As

shown by the shading in Figure 4.3, the first half of the interval maps to the second half

and the second half of the interval maps to the first. Points within each half maintain

their ordering.

���

���

���

���

���

���

���

���
����������������� � � � � � � � �

1 2 3 4 1 2 3 4

s=1

Figure 4.3: gX(1; 1, 3) for X ∼ Uniform(1, 3)

Figure 4.4 shows the result using (4.3) with the approximate endpoints L′ =

0.9 and R′ = 3.2. Here, eL = L − L′ and eR = R′ − R denote, respectively, the

50

(unknown) left and right approximation errors and eT = eL + eR denotes the total

endpoint approximation error. Points falling outside the interval (2, 4) can be detected

(for example, see step 4 in the algorithm described in Section 2.3.2) and hence rejected,

but in order to result in a draw uniformly distributed on (2, 4), we must “fill in” or

“patch” the gap with unknown endpoints in the center.

!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!!"!"!"!"!"!

#"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"##"#"#"#"#"#

$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$

%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%

&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&&"&"&"&"&"&

'"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"''"'"'"'"'"'

("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(("("("("("("(

)")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")"))")")")")")

1 2 3 4 1 2 4

s=1

0.9 3.2 1.9 4.2

{{

e
ee

R
TL

{3

Figure 4.4: gX(1; 0.9, 3.2) for X ∼ Uniform(1, 3)

We achieve this patch by reusing the rejected draws falling in (1.9, 2) and (4, 4.2).

These draws are manually shifted back by simple subtraction (Figure 4.5(a)) and the

result is then re-shifted with the map in (4.3) (Figure 4.5(b)).

More formally, the algorithm can be specified as follows.

(1) Shift: let X ′ = gX(s) =
⌊

s+R′−X
R′−L′

⌋

(R′ − L′) + X

(2) if X ′ /∈ (L + s,R + s), then patch:

• shift back manually by subtracting s and

• use the truncation map again.

In general, this shift-and-patch algorithm applies whenever eT < |s| < R− L.

Proposition 1 Let eL = L − L′ and eR = R′ − R, eT = eL + eR and lint = R − L.

Assume that

eT < |s| < lint.

51

1 2 3 40.9 3.2 1 2 3 41.9 4.2

1 2 3 40.9 3.2 1 2 3 41.9 4.2

""*"*"*"*"*"*"*+"+"+"+"+"+"+"+"+

,,
,,
,,
,,
,,

--
--
--
--
--

..
..
..
..
..

//
//
//
//
//

0"00"0
0"00"0
0"00"0
0"00"0
0"00"0

1"11"1
1"11"1
1"11"1
1"11"1
1"11"1

2"22"2
2"22"2
2"22"2
2"22"2
2"22"2

3"33"3
3"33"3
3"33"3
3"33"3
3"33"3

4"4"44"4"44"4"44"4"44"4"44"4"44"4"44"4"44"4"44"4"44"4"4

5"55"5
5"55"5
5"55"5
5"55"5
5"55"5
5"5

66
66
66
66
66
6

77
77
77
77
77
7

88
88
88
88
88
8

99
99
99
99
99
9

:"::":
:"::":
:"::":
:"::":
:"::":
:":

;";;";
;";;";
;";;";
;";;";
;";;";
;";

(a)

subtract 1

s = 1

(b)

Figure 4.5: Patching the Gap

52

Then the Shift-And-Patch algorithm defined above shifts X ∼ Uniform(L,R) to Z ∼

Uniform(L + s,R + s).

 L’ L L’+s R R’

 L’+s L+s R R+εε
TT
 R+s R’+s

 L’+s L+s R R+εε
L

 R+εε
TT
 R+s R’+s

SHIFT

PATCH

Figure 4.6: Shifting and patching the gap.

Proof

We will prove Proposition 1 by carefully examining where the shift- and patch-step

map numbers. Consider first the shift-step. We look at the interval (R′+s−R
R′−L′ , R′+s−L

R′−L′),

which is the domain for the floor-function used in the truncation map. Assume that

s > 0 (the case when s < 0 works similarly). We observe that 1 ∈ (R′+s−R
R′−L′ , R′+s−L

R′−L′)

since R′+s−X
R′−L′ = 1 for X = L′ + s and that , by assumption, we have L = L′ + eL <

L′ + s < L′ + lint = R so that X = L′ + s ∈ (L,R).

Since the interval has length R−L
R′−L′ = lint

lint+eT
< 1, and 1 ∈ (R′+s−R

R′−L′ , R′+s−L
R′−L′), the

floor-function in the truncation map can only take on values in {0, 1}. In fact, we have

⌊

R′ + s−X

R′ − L′

⌋

=

0 X ∈ (L′ + s,R)

1 X ∈ (L,L′ + s).

53

With this information, the truncation map in the shift-step can be written as

gX(s) =

X X ∈ (L′ + s,R)

X + (R′ − L′) X ∈ (L,L′ + s).

It is obvious that gX(s) maps (L′+s,R) uniformly onto (L′+s,R). The second interval

will simply be shifted by the constant amount of R′ − L′. To determine where the

second interval will be mapped, we evaluate gX(s) at the corresponding endpoints L

and L′ + s. We find that gL(s) = L + (R′ − L′) = R + (R′ − R) + (L − L′) = R + eT

and limX→(L′+s)− gX(s) = L′ + s + (R′ − L′) = R′ + s, so that the shift-step can be

summarized as uniformly mapping the following intervals onto

(L′ + s,R) −→ (L′ + s,R)

(L,L′ + s) −→ (R + eT , R′ + s) .

Note that this leaves us with the unwanted intervals (L′ + s, L + s) and (R + s,R′ + s),

as well as a gap of size eT in the middle of the interval (see Figure 4.6 for illustration).

We will now show that the patch-step places these unwanted intervals outside

(L + s,R + s) right into this gap.

In the patch step, we first shift back “manually”, so that the domain for the

truncation map becomes (L′, L) ∪ (R,R′). Since

⌊

R′ + s−X

R′ − L′

⌋

=

0 X ∈ (R,R′)

1 X ∈ (L′, L),

the truncation map for these intervals can be written as

gX(s) =

X X ∈ (R,R′)

X + (R′ − L′) X ∈ (L′, L),

which shows that the patch-step uniformly maps the following intervals onto

(R + s,R′ + s) −→ (R,R + eL)

(L′ + s, L + s) −→ (R + eL, R + eT) ,

54

which “fills the gap” < .

Remark

Note the assumption eT < |s| can be satisfied by choosing small enough incre-

ments when searching for the estimated endpoints L′ and R′. The assumption that

|s| < lint is natural in the sense that with |s| > lint it is impossible to get common

draws anyway.

4.4 The Shift and Fold Coupler

In this section, we combine the folding coupler with the layered multishift coupler

of Wilson [60] to increase the rate of common draws for two distributions with different

shapes. Again, we use normal distributions (this time with both different means and

different variances) for illustration purposes. (We apply the shift and fold coupler within

a perfect simulation setting in Section 4.5.3.)

4.4.1 Common Draws from N(µ1, σ
2
1) and N(µ2, σ

2
2)

Suppose that we want a (potentially) common value from draw from N(µ1, σ
2
1)

and N(µ2, σ
2
2). Assume that σ1 > σ2. We proceed as follows.

(1) Start with a value X1 drawn from the N(µ1, σ
2
1) distribution.

(2) Also, draw a value X2 in tandem (using the same random numbers) from the

N(µ1, σ
2
1) distribution. Or, more simply, let x2 = σ2

(

x2−µ1

σ1

)

+ µ2.

(3) Use a common draw from the Uniform(0, 1) to draw heights for the horizontal

slices and find the left and right endpoints L1, R1 and L2, R2. That is, draw

a value U from the Uniform(0, 1) distribution, let Y1 = Uh1(X1) and Y2 =

55

Uh2(X2), and let

L1 = −σ1

√

−2 log(σ1Y1) + µ1 L2 = −σ2

√

−2 log(σ2Y2) + µ2

R1 = σ1

√

−2 log(σ1Y1) + µ1 R2 = σ2

√

−2 log(σ2Y2) + µ2

(4) Follow the procedure of Section 4.3.1 (Wilson’s layered multishift coupler) to

draw values uniformly from (L1, R1) and (L1 + (µ2 − µ1), R1 + (µ2 − µ1)).

(5) Follow the procedure of Section 4.2.1 (folding coupler) the uniform draw from

(L1 + (µ2 − µ1), R1 + (µ2 − µ1)) as/into a uniform draw on (L2, R2).

4.4.2 Coupled Gamma Random Variates

We give an example that combines shifting, patching, and folding in order to

produce (potentially common) draws from two gamma distributions.

We used a “peak-to-peak” or “mode-to-mode” shift to produce 100,000 draws

from the Γ(3, 2) and the Γ(2, 3) distributions. Resulting histograms are shown in Fig-

ure 4.7.

4.5 Coupling Sample Paths in Perfect Sampling

As mentioned before, the purpose of the coupling methods presented in this sec-

tion is to couple continuous sample paths of Markov chains in perfect sampling algo-

rithms. We now describe three examples using techniques from previous sections within

(perfect) MCMC methods.

4.5.1 The Auto-Exponential Distribution

We apply the folding coupler to updates within the Gibbs sampler in order to

draw from the so-called auto-exponential density

π(x1, x2) ∝ exp{−β1x1 − β2x2 − β12x1x2} (4.4)

56

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6

0
.0

0
.2

0
.4

0
.6

Figure 4.7: Top Row: draws from Γ(3, 2), draws from shifted Γ(3, 2), draws from (shifted
and scaled) Γ(2, 3). Bottom Row: common draws for Γ(3, 2) and shifted version (60%).

57

where β1 > 0, β2 > 0, β12 < 0, 0 < x1 < − β2

β12
, and 0 < x2 < − β1

β12
.

We restrict β12 to be negative (which then forces restrictions on the ranges of x1

and x2) only for ease of algorithm exposition. This restriction is unnecessary and will

be removed in Section 4.5.2.

To run the standard Gibbs sampler (see Appendix A), we wish to alternate draws

from the conditional truncated exponential 1 distributions

X1|X2 = x2 ∼ truncated exp(rate = β1 + β12x2)

X2|X1 = x1 ∼ truncated exp(rate = β2 + β12x1),

where the truncated exponential densities are simply exponential densities truncated to

and renormalized over the appropriate support sets. We denote these densities (likeli-

hoods) by πx2(x) (hx2(x)) and πx1(x) (hx1(x)), respectively. To be precise,

πx2(x) =
(β1 + β12x2) exp[−(β1 + β12x2)x]

[1− exp(−(β1 + β12x2)(−β2/β12))]
for 0 < x < − β2

β12

and

πx1(x) =
(β2 + β12x1) exp[−(β2 + β12x2)x]

[1− exp(−(β2 + β12x1)(−β1/β12))]
for 0 < x < − β1

β12
.

Since β12 is negative, this model is attractive in the sense that a small (large) x1

will produce a small (large) x2 and vice versa. The Gibbs sampler is then stochastically

monotone if we consider the partial ordering

(x1, y1) � (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2 (4.5)

with a “lowest point” of (0, 0) and a “highest point” at
(

− β2

β12
,− β1

β12

)

.

That is, a sample path started at any point (x1, x2) in the state space will always

stay in between sample paths started from (0, 0) and
(

− β2

β12
,− β1

β12

)

.

1 Our notation for the parameter of an exponential distribution follows

X ∼ exp(λ) ⇒ X has density f(x; λ) = 1l(0,∞)(x) exp{−λx}.

58

Updating sample paths

Suppose that at time n, the “lower process”, started in state (l
(0)
1 , l

(0)
2) = (0, 0)

is at some point (l
(n)
1 , l

(n)
2), and that the “upper process”, started in state (u

(0)
1 , u

(0)
2) =

(

− β2

β12
,− β1

β12

)

, is at some point (u
(n)
1 , u

(n)
2).

We want to draw values for

l
(n+1)
1 from truncated exp(β1 + β12l

(n)
2) and

u
(n+1)
1 from truncated exp(β1 + β12u

(n)
2),

and we want these to potentially be the same value in order for the sample paths

to coalesce. Suppressing time notation, this means that we want to draw potentially

common values for

l1 from the truncated exponential density πl2(x) ∝ hl2(x) and

u1 from the truncated exponential density πu2(x) ∝ hu2(x)

where both densities have common support
(

0,− β2

β12

)

.

To achieve these common draws, we

(1) Draw, in tandem (using the same random numbers), coupled values l ′1 and u′
1

directly from πl2(x) and πu2(x) so that l′1 ≤ u′
1. One could, for example, evaluate

the inverses of the distribution functions at a single value U1 drawn from the

Uniform(0, 1) distribution. These values give the locations of the initial vertical

slices for each density.

(2) Draw V1 ∼ Uniform(0, 1) and set Yl = V1 · hl2(l
′
1) and Yu = V1 · hu2(u

′
1). These

values give the heights of the horizontal slices for each density.

(3) Find the right endpoints of the horizontal slices, Rl = Rl(Yl) and Ru = Ru(Yu),

where Rl = h−1
l2

(Yl) and Ru = h−1
u2

(Yu). Note that the left endpoints are always

at 0 in this example and that Rl ≤ Ru.

59

(4) Draw uniformly from the horizontal slices as follows.

(i) Draw W1 ∼ Uniform(0, 1) and set W ′
1 = − β2

β12
W1. This value is uniformly

distributed over
(

0,− β2

β12

)

, the widest possible horizontal slice.

(ii) If W ′
1 ≤ Ru, then W ′

1 is uniform over (0, Ru), so we set u1 = W ′
1. On the

other hand, if W ′
1 > Ru, we obtain the outcome u1 by folding W ′

1 into the

interval (0, Ru) according to

u1 =
W ′

1 −Ru

R−Ru
Ru

where R = − β2

β12
.

(iii) Similarly, if W ′
1 ≤ Rl, then W ′

1 is uniform over (0, Rl), so we set l1 = W ′
1.

On the other hand, if W ′
1 > Rl, we obtain the outcome l1 by folding W ′

1

into the interval (0, Rl) according to

l1 =
W ′

1 −Rl

R−Rl
Rl

where R = − β2

β12
.

Note that coupling of the lower and upper sample paths is achieved when W ′
1 ≤ Rl.

That is, coupling is achieved when the lower process accepts a horizontal uniform draw

without folding. In this case, l1 = u1 = W ′
1, so it is not necessary to run the upper

process at all.

We have described only the updates for one of the first components of the lower

and upper processes. The second components

l2 = l
(n+1)
2 from truncated exp(rate = β2 + β12l

(n+1)
1), and

u2 = u
(n+1)
2 from truncated exp(rate = β2 + β12u

(n+1)
1),

are updated in a similar manner with independent uniform variates U2, V2, and W2.

We can now describe the algorithm for generating a perfect sample from π.

60

Folding Backward Coupling Algorithm

(1) Draw three independent sequences of Uniform(0, 1) variables U
(n)
1 , V

(n)
1 , and

W
(n)
1 for the first component of the Gibbs chain, and three independent se-

quences of Uniform(0, 1) variables U
(n)
2 , V

(n)
2 , and W

(n)
2 for the second compo-

nent of the Gibbs chain, for n = 0,−1,−2,

(2) For each time −n = −1,−2, . . ., start a lower path (l
(−n)
1 , l

(−n)
2) at (0, 0).

(3) (a) For the first component:

For k = n, n− 1, . . . , 1, update from l
(−k)
1 to l

(−k+1)
1 by

(i) using U
(−k+1)
1 to draw a value l′1 directly from π

l
(−k)
2

(x),

(ii) setting Y1 ≡ Y
(−k+1)
1 = V

(−k+1)
1 h

l
(−k)
2

(l′1)

(the height of the vertical slice),

(iii) setting R1 ≡ R
(−k+1)
1 = h−1

l
(−k)
2

(Yl)

(the right endpoint of the horizontal slice).

(iv) setting W ′
1 ≡W

′ (−k+1)
1 = − β2

β12
W

(−k+1)
1 and

l
(−k+1)
1 =

W ′
1 W ′

1 ≤ R1

W ′

1−R1

R−R1
R1 W ′

1 > R1,

where R = − β2

β12
.

(b) For the second component:

For k = n, n− 1, . . . , 1, update from l
(−k)
2 to l

(−k+1)
2 by

(i) using U
(−k+1)
2 to draw a value l′2 directly from π

l
(−k)
1

(x)

(ii) setting Y2 ≡ Y
(−k+1)
2 = V

(−k+1)
2 h

l
(−k)
1

(l′2)

(the height of the vertical slice),

(iii) setting R2 ≡ R
(−k+1)
2 = h−1

l
(−k)
1

(Yl)

(the right endpoint of the horizontal slice),

61

(iv) setting W ′
2 ≡W

′ −k+1)
2 = − β1

β12
W

(−k+1)
2 and setting

l
(−k+1)
1 =

W ′
2 W ′

2 ≤ R2

W ′

2−R2

R−R2
R2 W ′

2 > R2,

where R = − β1

β12
.

(4) Continue until time T = max(T1, T2) where Ti is the minimum n such that

W
′ (−n+1)
i ≤ R

(−n+1)
i .

Simulation Results

We simulated 100,000 draws from the auto-exponential distribution given by (4.4)

using β1 = 2, β2 = 3, and β12 = −1. Table 4.1 gives resulting estimates for the proba-

bilities that draws come from (arbitrarily) selected regions in the plane and Figure 4.8

and Figure 4.9 show the estimated marginal densities for X1 and X2 along with curves

showing the true marginal densities. The mean backward coupling time in 100,000

draws was 3.44 with a minimum of 1 and a maximum of 26. A histogram of backward

coupling times is given in Figure 4.10.

Table 4.1: Estimating probabilities
∫ ∫

R π(x1, x2) for the auto-exponential distribution
using proportions of simulated draws.

R true value 95% conf. int. est. value abs. err. rel. err.

[0, 1] × [0, 1] 0.7340 (0.7301, 0.7357) 0.7329 0.0011 0.0016

[0, 0.5] × [0, 1] 0.5136 (0.5104, 0.5167) 0.5128 0.0008 0.0015

[0.2, 3] × [0, 0.5] 0.4812 (0.4780, 0.4843) 0.4823 0.0011 0.0023

[0, 1] × [1, 2] 0.0547 (0.0533, 0.0561) 0.0548 0.0000 0.0009

[1, 3] × [0, 1.5] 0.1955 (0.1930, 0.1980) 0.1971 0.0016 0.0082

62

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

x1

Figure 4.8: 100,000 draws from the auto-exponential distribution – the marginal distri-
bution of X1.

63

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x2

Figure 4.9: 100,000 draws from the auto-exponential distribution – the marginal distri-
bution of X2.

64

0 5 10 15 20 25

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

bct

Figure 4.10: 100,000 draws from the auto-exponential distribution – the backward cou-
pling times.

65

4.5.2 The Auto-Gamma Distribution

The following example is the natural counterpart to the auto-exponential distri-

bution described in Section 4.5.1. We implement a slice coupling technique that uses

an accept/reject step, in contrast to the folding coupler used in Section 4.5.1.

We consider the bivariate distribution

π(x1, x2) ∝ xα1−1
1 xα2−1

2 exp{−β1x1 − β2x2 − β12x1x2} (4.6)

where α1, α2, β1, β2, β12 are positive. Note that the conditional densities are given by

X1|X2 = x2 ∼ Γ(α1, β1 + β12x2)

X2|X1 = x1 ∼ Γ(α2, β2 + β12x1).

The model (4.6) can be generalized to a k-variate density and is known as the

auto-gamma model (see, for instance, Møller [39]). The algorithm described below,

based on an idea of Kendall [32], can be easily modified to simulate from a k-variate

density, however, for simplicity, we will restrict ourselves to the case k = 2.

Repulsive Gibbs chain

Since β12 > 0, this model is repulsive in the sense that a large (small) x1 will

produce a large (small) scaling parameter for the conditional gamma-density for X2

and therefore result in a small (large) value for x2 (and vice versa). If we wish to

run a Gibbs sampler in order to draw values from π(x1, x2), the Gibbs chain will be

stochastically anti-monotone or repulsive with respect to the natural partial ordering on

IR2 as defined (4.5).

Running the chain perfectly

To run the chain in a perfect sampling setting, we wish to start in a highest and

lowest point. In order to maintain an upper and lower process u(n) = (u
(n)
1 , u

(n)
2) and

66

l(n) = (l
(n)
1 , l

(n)
2), we use the upper process to update the lower chain and the lower

process to update the upper chain.

draw u
(n+1)
1 ∼ Γ(α1, β1 + β12l

(n)
2) and l

(n+1)
1 ∼ Γ(α1, β1 + β12u

(n)
2)

draw u
(n+1)
2 ∼ Γ(α2, β2 + β12l

(n+1)
1) and l

(n+1)
2 ∼ Γ(α2, β2 + β12u

(n+1)
1).

This idea due to Kendall [32] and implemented by Møller [39], will preserve monotonic-

ity, so that all sample paths will be sandwiched between the lower and upper processes.

Møller [39] showed that once the lower and upper process differ only by an amount

of ε, they will, with the updates described above, stay within a distance ε of each other

(ε-coupling).

The “ε-perfect” sampling algorithm (which results in draws from a target dis-

tribution up to any desired accuracy ε) requires that one initializes lower and upper

chains at successively more distant times in the past and run the two processes forward

to time zero until the chains at time zero differ by at most ε (ε-coupling). Again we

wish to emphasize that it is necessary to reuse random number streams as described in

Section 2.1.

We now describe how to couple sample paths using the slice-sampling approach

from Section 4.2.2 to achieve actual coalescence and therefore perfect draws from (4.6).

A bounding process

Since the state space is (0,∞) × (0,∞), (0, 0) is clearly a “smallest point” to

start the lower process, however there is no “highest point”. As mentioned in the para-

graph on “Monotonicity and Bounding Processes” in Section 2.2, we can instead use

a bounding process which we find by making the following observation. The condi-

tional distributions for Xi (which have a fixed shape parameter αi) have a smallest

scale parameter βi, which will yield a “largest” Xi, so that Di ∼ Γ(αi, βi) is an up-

per bounding or “dominating” process for the ith component of the Gibbs chain. We

67

therefore initialize the lower and upper process with

l(0) = (0, 0) and u(0) = (d1, d2),

where di are realizations of Di, i = 1, 2.

Updating and coupling sample paths

We will now describe in detail how to update the sample paths using slice sampling

in order to get potentially common draws.

Assume we wish to update the first component of each (upper and lower) process.

As with the auto-exponential model in Section 4.5.1, we will draw for both processes

simultaneously.

We choose to describe the case for α1 ≤ 1. The case α1 > 1 works analogously,

although one has to keep in mind that the shape of the density function is quite different

when doing the slice sampling step.

Suppose we need to draw l
(n+1)
1 ∼ Γ(α1, βl) and u

(n+1)
1 ∼ Γ(α1, βu) where βl =

β1 + β12u
(n)
2 and βu = β1 + β12l

(n)
2 are the scale parameters defined by the second

component of the upper and lower process, respectively. Note that we have β1 < βu < βl.

Since we do not need to know the constant of proportionally in order to do slice sampling,

we use the likelihood h(x) = (βx)α−1e−βx to define the shape of the curve. For the sake

of simplicity, let h1(x) denote the gamma likelihood with parameters α1, β1 for the

dominating process and let hl1(x) and hu1(x) denote the likelihoods with parameters

α1, βl and α1, βu, respectively.

Let s1 and s2 denote seeds to initialize the random number generator used. We

describe the algorithm for a generic time step and omit the time index for ease of

exposition, for example, si = s
(n)
i .

To update l1 and l2

(1) Seed the random number generator (RNG) using s1.

68

(2) Draw (e.g. by an accept-reject method) X ∼ Γ(α1, β1) from the dominating

process.

(3) Draw U ∼ Uniform(0, 1) and set Y = U · h1(X).

(4) Approximate the exact endpoint R = h−1
1 (Y) defined by the horizontal slice

H(Y) = (0, h−1
1 (Y)) by R′ (where R < R′) and draw X ′ ∼ Uniform(0, R′) until

X ′ ∈ (0, R), updating R′ by X ′ anytime X ′ /∈ (0, R). (Note that X ′ ∈ (0, R) can

be verified be checking if h1(X
′) < Y . Also, note that such an approximation

is only used as an intermediate step and that the ultimate outcome will not be

an approximation.)

(5) • If hu1(X
′) < Y set u1 = X ′,

• otherwise seed the RNG using s2, set R′′ = X ′, then

(a) draw X ′′ ∼ Uniform(0, R′′).

(b) If hu1(X
′′) < Y , set u1 = X ′′, otherwise, set R′′ = X ′′ and return to

step 5(a).

(6) • If hl1(X
′) < Y set l1 = X ′,

• otherwise seed the RNG using s2, set R′′ = X ′, then

(a) draw X ′′ ∼ Uniform(0, R′′).

(b) If hl1(X
′′) < Y , set l1 = X ′′, otherwise, set R′′ = X ′′ and return to

step 6(a).

Remarks

(1) The update described above eventually yields potentially common values for u1

and l1 and therefore allows the upper and lower processes to eventually couple.

69

(2) Since it is not known a priori how many random numbers will be used to update

the sample paths, it is convenient to store seeds instead. For this algorithm,

two seeds are needed for each component and time step.

(3) To initialize the upper process, we need to draw the ith component from a

Γ(αi, βi) distribution. In order to run the sample paths preserving the Markov-

property, the draw for the dominating process must be the X ′ obtained in steps

(1) − (4) in the algorithm described above.

(4) In the slice sampling described in Section 4.5.1, we needed to scale (and shift)

the starting point X to make it a starting point for the other distribution(s)

(say Xl and Xu) we are sampling from. In this case, this step is unnecessary

since we would have Xl = β1

βl
X and Xu = β1

βu
X. However, by omitting certain

constants in the choice of h, we get that hl(Xl) = hu(Xu) = h(X), so that the

y-value which defines the horizontal slice is the same for all three distributions.

(5) In the 6 steps above, we describe only the update in one component for one time

step −n→ −n+1. To actually run the Perfect-Sampling algorithm, this has to

be extended for the second component as well as for starting points at succes-

sively further distant times in the past until the lower and upper process have

coupled at time zero. The random seeds must be reused for the corresponding

time steps.

Simulation results

Again, we simulated 100,000 draws from the distribution given by (4.6) using

α1 = α2 = 0.5 and β1 = 2, β2 = 3, β12 = 1. Table 4.2 gives resulting estimates for

the probabilities that draws come from (arbitrarily) selected regions in the plane and

Figure 4.11 and Figure 4.12 show the estimated marginal densities for X1 and X2 along

70

with curves showing the true marginal densities. The mean backward coupling time in

100,000 draws was 1.07 with a minimum of 1 and a maximum of 3.

Table 4.2: Estimating probabilities
∫ ∫

R π(x1, x2) for the auto-gamma distribution using
proportions of simulated draws.

R true value 95% conf. int. est. value abs. err. rel. err.

[0, 0.5] × [0, 0.2] 0.6306 (0.6276,0.6336) 0.6280 0.0025 0.0040

[0.2, 1] × [0.5, 2] 0.0201 (0.0192,0.0210) 0.0204 0.0003 0.0134

[0.1,∞] × [0.2, 3] 0.1245 (0.1225,0.1266) 0.1241 0.0004 0.0031

[0.2, 2] × [0, 1] 0.3476 (0.3447,0.3506) 0.3477 0.0001 0.0004

4.5.3 Storage Model

We now illustrate the application of the folding and shifting coupler for a fi-

nite storage system on [0,K] with independent and identically distributed exponential

replenishments with mean 1/µ at the arrival times of a Poisson process with rate λ. Ex-

cessive input above K < ∞ is considered overflow and cannot be saved for future use.

Between arrivals, content is released deterministically at rate r(u). The Markov chain

embedded just prior to arrival times satisfies the PASTA property (see Asmussen [1])

which ensures that its stationary distribution is identical to the stationary distribution

of the continuous time chain.

The assumption of finiteness of the system is not critical as we may remove

this restriction using an upper bounding random process as in Tweedie and Corcoran

[57]. This idea is due to Kendall [32], David Wilson (private communication) has also

developed a system for doing this.

We shall consider specifically the case r(u) = βu for β > 0. For x ∈ (0,K], it

can be shown (Lund, private communication) that the density π(x) of the stationary

71

−1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

x1

Figure 4.11: 100,000 draws from the auto-gamma distribution – the marginal distribu-
tion of X1.

−1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

x2

Figure 4.12: 100,000 draws from the auto-gamma distribution – the marginal distribu-
tion of X2.

72

distribution π is given by

π(x) =
x(λβ−1−1)e−µx

∫ K
0 x(λβ−1−1)e−µxdx

for x ∈ (0,K], (4.7)

but in general the denominator cannot be integrated.

Corcoran and Tweedie [10] and Tweedie and Corcoran [57] describe perfect sam-

pling algorithms applicable to this system involving minorizations and chain splitting,

but the following described folding and shifting technique is much easier to apply.

The “natural” way to simulate an embedded time step of this storage process is

to make a transition from state x to state y as follows.

(1) Draw replenishment jump and inter-arrival values j and t from the exponential

distributions with rates µ and λ, respectively.

(2) Jump to z = min(x + j,K).

(3) End at y = ze−t. (This is the result of the release rate r(u) = u.)

Alternatively, we may make this transition as follows.

(1) Draw a jump value j from the exponential distribution with rate µ.

(2) Jump to z = min(x + j,K).

(3) End at value y drawn from the density f z
Y (y) = λ

zλ yλ−1I(0,z)(y).

The density in step 3 is simply that of Y = ze−T where T is exponentially distributed

with rate λ. Now, to attempt to couple two sample paths with current values x1 and

x2, we make a transition as follows.

(1) Draw a jump value j from the exponential distribution with rate µ.

(2) Jump the paths to z1 = x1 + j and z2 = x2 + j.

(3) Use shifting and folding to draw values (potentially common) from f z1
Y and

f z2
Y (y).

73

We consider here only the case λ > 1. The relative shapes of the two densities in

step (3) are shown in Figure 4.13. We obtain (potentially common) draws from these

distributions by first using the shift method described in Section 4.3.2 to draw values

from f z2
Y (y) and

f(y) =
λ

zλ
2

(y + z2)
λ−1I(z1−z2,z1)(y)

(one can imagine sliding the wider density to the left until the vertical lines match up)

and then folding this shifted wide draw (potentially negative at this point) using (4.1).

z1 z2

Figure 4.13: Relative shapes of two densities for f z1
Y and f z2

Y (y)

Chapter 5

Bayesian Variable Selection in a Linear Regression Model

5.1 Introduction

In this chapter, we describe the use of perfect sampling algorithms for Bayesian

variable selection. Variable selection is an important and well-studied problem in many

areas. There are various approaches to solve this problem – among them Bayesian

methods that use MCMC-algorithms. The novelty of our approach is the use of

exact methods that completely eliminate convergence issues which would

arise when applying regular MCMC techniques. This chapter was sparked by

the paper of Huang and Djurić [31] who solve a basic case of a variable selection problem

using perfect sampling and state the need for algorithms to solve more general cases.

The chapter is organized as follows. We formulate the problem of variable selec-

tion in a linear regression model in Section 5.2. We describe perfect simulation methods

from the posterior of the Bayesian model in Section 5.3. We begin by describing Huang

and Djurić’s [31] approach using perfect simulation in Section 5.3.1. The remainder of

the section is devoted to generalizing the model step by step, allowing more and more

components to be random. We specify perfect sampling algorithms that can be used to

solve these different cases by incorporating a Gibbs sampler along with slice coupling

techniques from Chapter 4 as well as the IMH algorithm 1 from Chapter 3. At last, we

present promising results in Section 5.4 that were found testing the different algorithms

1 In this chapter, by “IMH algorithm”, we refer to the perfect version from Section 3.3.1.

75

on artificial data sets. We show tests on a real data set in Section 5.5.

5.2 The Problem of Variable Selection

This section deals with a model for variable selection and describes the approach

we chose to solve it. For a general overview of the variable selection problem and relevant

references, see for example George [22] or the website [38] with links to many papers on

model/variable selection.

Consider data records given by a linear regression model with i.i.d. Gaussian noise

y = γ1θ1x1 + · · ·+ γrθrxr + ε, (5.1)

where y is an n × 1 response vector, xi ∈ IRn are n × 1 vectors of predictors, θi ∈ IR

are the corresponding coefficients, and γi ∈ {0, 1} are indicators taking values 0 and 1

for i = 1, . . . , r. The noise vector ε ∈ IRn is assumed to have independent components

with εj ∼ N(0, σ2) for j = 1, . . . , n.

5.2.1 The Goal

Our task is to recover from the data the subset of the r predictors that are a part

of the model, that is, we want to determine the values of the indicators γ = (γ1, . . . , γr)
′.

We approach this problem from a Bayesian perspective, selecting as an optimal

γ the one that appears most frequently when sampling from the posterior density

πΓ,σ2,Θ| = (γ, σ2,θ|y) ∝ L(γ, σ2,θ)g(γ, σ2,θ) (5.2)

of the parameters given the data. Here, L(·) is the likelihood, g(·) is a prior for the

parameters, θ = (θ1, θ2, . . . , θr)
′ and γ and σ are as above.

This is a common way to address variable selection (see for example George and

McCulloch, and Chipman et al. [23, 24, 25, 6]). As mentioned in Section 5.1, generat-

ing samples from the posterior is usually achieved with regular (approximate) MCMC

76

methods – the significance of this chapter is to develop and extend exact methods for

this purpose.

5.2.2 The Priors

We use the standard normal-gamma conjugate class of priors suggested by Raferty

et al. [47],

λν

σ2
∼ χ2(ν) −→ Z :=

1

σ2
∼ Γ(

ν

2
,
λν

2
), (5.3)

θ ∼ N(ξ, σ2V) (5.4)

in addition to the non-informative prior for γ,

γi
iid∼ Bernoulli(

1

2
) i = 1 . . . , q (5.5)

Here, λ and ν and V are hyperparameters to be chosen.

5.3 Perfect Simulation From the Posterior

In Section 5.3.1 we describe an existing algorithm of Huang and Djurić [31] for

perfect sampling from (5.2) when σ2 and θ are fixed and known. In the remaining

sections we gradually allow for other layers of randomness.

5.3.1 Fixed Variance, Fixed Coefficients

For fixed σ2 and θ, the posterior distribution of the indicators in (5.2) with the

uniform noninformative prior on the components of γ is

πΓ| = (γ|y) ∝ exp

− 1

2σ2

q
∑

j=1

r
∑

k=1

γjγkθjθkx
′
jxk +

1

σ2

r
∑

j=1

γjθjx
′
jy

 . (5.6)

77

The full conditional distributions are then given by

π(γi = 1|γ−i,y) =
Pr(γi = 1,γ−i|y)

Pr(γi = 0,γ−i|y) + Pr(γi = 1,γ−i|y)

=

1 + exp

1

σ2

r
∑

j=1

j 6=i

γjθiθjx
′
ixj +

1

2σ2
θ2
i x

′
ixi −

1

σ2
θix

′
iy

−1

(5.7)

where γ−i = (γ1, . . . , γi−1, γi+1, . . . , γr).

A first-pass perfect sampling approach would be to look for a monotonicity struc-

ture (mentioned in the paragraph on “Monotonicity and Bounding Processes” in Sec-

tion 2.2) and to consider the partial ordering

Γ1 � Γ2

when any component that is a 1 in Γ1 is also a 1 in Γ2. One could then consider the “top”

and “bottom” of the space to be (1, . . . , 1) and (0, . . . , 0), respectively. Unfortunately,

Huang and Djurić [31] show that the standard Gibbs update (see Appendix A) does not,

in general, preserve the monotonicity property required for the feasibility of a perfect

sampling scheme for large r. Instead they make clever use of the Gibbs coupler which

is a support set coupling technique that we now describe.

To begin, we require lower and upper bounding processes for the Gibbs update

given by (5.7). That is, we seek, for n = 1, 2, . . ., processes {L−n} and {U−n} so that

L−n � X−n � U−n,

where {X−n} is the r-dimensional Gibbs chain with stationary distribution given by

(5.6) and updates given by (5.7).

Huang and Djurić [31] construct {L−n} and {U−n} by assigning, for any time

step, the ith components to be 1 with probabilities

PL(γi = 1) and PU (γi = 1), respectively, where these probabilities are such that

PL(γi = 1) ≤ π(γi = 1|γ−i,y) ≤ PU (γi = 1).

78

To obtain such sandwich distributions, we begin by breaking the sum in (5.7) into

two parts

π(γi = 1|γ−i,y) =

1 + exp

1

σ2

∑

j∈C

γjθiθjx
′
ixj +

∑

j /∈C

γjθiθjx
′
ixj +

1

2
θ2
i x

′
ixj − θix

′
iy

−1

,(5.8)

where C is the set of indices of all of the components that have coupled successfully by

this particular time step. (We have suppressed the time notation.)

For the γ-components referenced by C, all three processes are equal, and for the

γ-components not in C, the current state of these components are still unknown. Using

the second sum in (5.8) we can make the overall expression smallest if we set γj with

j /∈ C to be 1 when the coefficient θiθjx
′
ixj is positive and, likewise, we can make it

largest if we set γj with j /∈ C to be 1 when the coefficient θiθjx
′
ixj is negative. The

other γ-components are set to zero.

So, we have

PL(γi = 1) = [1 + exp{ 1

σ2
(
∑

j∈C

γjθiθjx
′
ixj +

∑

j∈P

θiθjx
′
ixj +

1

2
θ2
i x

′
ixi − θix

′
iy)}]−1 (5.9)

and

PU (γi = 1) = [1 + exp{ 1

σ2
(
∑

j∈C

γjθiθjx
′
ixj +

∑

j∈N

θiθjx
′
ixj +

1

2
θ2
i x

′
ixi − θix

′
iy)}]−1,(5.10)

where

P = {j | θiθjx
′
ixj > 0} and N = {j | θiθjx

′
ixj < 0}.

Rather than following the values of the γ-components through time, support set

coupling keeps track of the potential values generated by the Gibbs sampler. For each

i = 1, 2, . . . , r, we will determine, at each time step, if γi is 0, 1, or undecided. That is,

we will assign its support set, Si, to be {0}, {1}, or {0, 1}. It is most difficult to obtain,

for the value of γi, a 1 in the lower process and a 0 in the upper process. Hence, if the

79

former is achieved, all possible sample paths will have γi set equal to 1 (Si = {1}). In

the latter case, all possible sample paths will have γi set equal to zero (Si = {0}). If

neither case arises, we will leave the value of γi in our sample path of interest undecided

(Si = {0, 1}). More specifically, at each backward time step n = 1, 2, . . . and for each

component i = 1, 2, . . . r, we draw a Uniform(0, 1) random variable V , (V = V −n
i), and

set

Si =

{0}, V > PU (γi = 1)

{1}, V < PL(γi = 1)

{0, 1}, otherwise.

Coupling is achieved when all r components have a singleton support set.

We wish to strongly emphasize here that we have suppressed important notation

in an attempt to not (we hope) overwhelm the reader in order to get some general ideas

across. In particular, we have suppressed

(1) General Time Notation

As mentioned in Section 2.1, the organization of random number streams, that

is, the re-use of random numbers, is critical to the success of any perfect sim-

ulation algorithm. Newcomers to perfect simulation algorithms might best be

served by first gaining an understanding of the basic ideas involved. We again

refer interested readers to Casella and Robert [4].

(2) Gibbs Component Time Notation

In the update probabilities given by (5.9) and (5.10), we are revising the r γ-

components in order at each time step. If we use γ
(n)
i to represent the value

of the ith component at time n, the update for γ
(n)
i involves γj = γ

(n)
j for

j = 1, . . . , i− 1 and γj = γ
(n−1)
j for j = i + 1, . . . , r.

Expanded notation may be found in Huang and Djurić [31].

80

5.3.2 Random Variance, Fixed Coefficients

We first extend the model by incorporating a random variance for the Gaussian

noise according to (5.3). Assuming that the coefficient-vector θ is fixed, the posterior

distribution becomes

πΓ,Z| = (γ, z|y) ∝ z
n
2
+ ν

2
−1 exp{−1

2
z[λν + (y −

r
∑

i=1

γiθixi)
′(y −

r
∑

i=1

γiθixi)]}. (5.11)

Since we intend to apply a Gibbs sampler (see Appendix A) again, we need to look at

the conditional probabilities. It is easy to see that

Z|Γ,Y ∼ Γ

(

n + ν

2
,
1

2
[(y −

r
∑

i=1

γiθixi)
′(y −

r
∑

i=1

γiθixi) + λν]

)

(5.12)

and that the posterior conditional distribution for the vector of indicators γ given Z is

πΓ| = ,Z(γ|y, z) ∝ exp

− 1

2σ2

q
∑

j=1

r
∑

k=1

γjγkθjθkx
′
jxk +

1

σ2

r
∑

j=1

γjθjx
′
jy

 . (5.13)

Note that the distribution for Γ|Y , Z is the same as in (5.6) since Z = z is fixed.

So once we know the value for Z, we can use the support set coupling from Section 5.3.1

to simulate perfectly from Γ|Y , Z. On the other hand, if we know the value for Γ, we

can draw from a gamma distribution for Z|Γ,Y . Hence, we can run sample paths of a

“bivariate” Markov chain that has stationary distribution given by (5.11). Note that we

are thinking of γ and Z as two random variables as opposed to r + 1 random variables

(z, γ1, . . . , γr)
′.

Our problem now is to consider coupling together these Gibbs-generated sample

paths. Note that we will be describing a perfect simulation within a perfect simulation.

The Coupling

The key observation for simulating from (5.11) is that the conditional gamma

distribution for Z|Γ,Y has a fixed shape parameter α = n+ν
2 and scale parameter

β(γ) = 1
2 [(y −∑r

i=1 γiθixi)
′(y −∑r

i=1 γiθixi) + λν] that can be bounded above and

81

below independently of γ (see the next paragraph for details),

βmin ≤ β(γ) ≤ βmax ∀γ ∈ {0, 1}r . (5.14)

If we can get a common draw for Γ(α, βmin) and Γ(α, βmax), it will be a draw

from Γ(α, β) for all β such that βmin ≤ β ≤ βmax, and therefore a draw for Z|Γ,Y no

matter what the particular values for (γ1, . . . , γr) were! This can be achieved by the

slice coupling approach described in Chapter 4 and we address how it applies to this

problem in more detail in the Paragraph “Slicing for the Z-Component” below.

So, at each time point −n, n = 1, 2, . . ., we begin by drawing two values for Z,

one from each of the distributions Γ(α, βmin) and Γ(α, βmax) using the slice coupling

approached described in Chapter 4 until the first time point −n∗ where we get a common

value for Z. Once this value is locked in, all ambiguity is removed and we move forward

in time from −n∗ to zero with a Gibbs sampler where we alternate at each time point

between

(1) using Huang and Djurić’s algorithm (Section 5.3.1) in its entirety to sample a

vector of γ components given Z, and

(2) sampling a new Z from the resulting gamma distribution described by (5.12)

for the fixed vector γ from step 1.

Bounding β

Expanding the expression for β(γ), we get

β(γ) =
1

2
(y′y + λν)−

r
∑

i=1

γiθix
′
iy +

1

2

r
∑

i=1

γ2
i θ2

i x
′
ixi +

∑

i<j

γiγjθiθjx
′
ixj.

82

By defining

I1 = { i | θix
′
iy ≥ 0}

I2 = { i | θix
′
iy < 0}

M1 = { (i, j) | θiθjx
′
ixj ≥ 0}

M2 = { (i, j) | θiθjx
′
ixj < 0}

and

βmin := max{1
2
λν,

1

2
(y′y + λν)−

∑

i∈I1

θix
′
iy +

∑

(i,j)∈M2

θiθjx
′
ixj}

βmax :=
1

2
(y′y + λν)−

∑

i∈I2

θix
′
iy +

1

2

r
∑

i=1

γ2
i θ2

i x
′
ixi +

∑

(i,j)∈M1

θiθjx
′
ixj

(5.14) is easily verified.

Slice Coupling For the Z-Component

We now demonstrate how to couple the z-component using the slice sampling

approach from Chapter 4 in more detail.

Our goal is to get a potentially common draw from two different gamma distribu-

tions, Γ(α, βmin) and Γ(α, βmax). In Section 4.2.2 we demonstrate that we only need to

know the density function up to a constant, so we choose h1(x) = (βminx)α−1e−βminx,

x > 0, and h2(x) = (βmaxx)α−1e−βmaxx, x > 0, respectively. We assume that α ≤ 1

(the case where α > 1 works in a similar manner) and we clearly have βmin < βmax.

Note that the horizontal slice H(y) in the last step of the slice sampling procedure is of

the form (0, r). Also note that a smaller scale parameter β will yield a larger gamma

variable and a wider horizontal slice H(y).

(1) Draw x ∼ Γ(α, 1), let x1 = x
βmin

, and x2 = x
βmax

.

(2) Draw u ∼ Uniform(0, 1) and let y1 = uh1(x1), and y2 = y1.

83

(3) Approximate the endpoint with r1 of the wider slice and

(a) draw u′ ∼ Uniform(0, r1),

(b) if h1(u
′) > y1, accept x′

1 = u′ otherwise update r1 = u′ and go to step (1).

(4) If h2(x
′
1) > y2, accept x′

2 = x′
1 – a common draw!

Otherwise (accept-reject), approximate the endpoint r2 = x′
1 and

(a) draw u′ ∼ Uniform(0, r2),

(b) if h2(u
′) > y2, accept x′

2 = u′

otherwise update r2 = u′ and go to step (1).

Remarks

• Note that our choice of h1 and h2 yields h1(x1) = h2(x2) (with the notation

from step (1)), which justifies setting y2 = y1 in step (2).

• Even though the pdf of a gamma distribution is non-invertible, this did not

create a problem in steps (3) and (4) of the slice sampling procedure. We may

be approximating the right endpoint of the horizontal slice, but we are draw-

ing uniformly from the true horizontal slice in an accept/reject procedure by

checking whether the draw from the approximated slice falls under the density

or not.

• The approximation r1 of the right endpoint of the wider slice can be computed

by, for example, approaching the true endpoint “from the left” (e.g. starting

at 0) and adding small increments until the true endpoint is exceeded. This

approximation (as well as the approximation r2 for the endpoint of the narrower

slice) will be updated during the algorithm to increase efficiency.

84

Sampling For the Variance and Indicators Together

An algorithm to draw from (5.11) is given by the following.

(1) Find a backward coupling time T : for each time t = 0,−1,−2, . . .

(a) Draw zmin
t and zmax

t according to Γ(α, βmin) and Γ(α, βmax) using the

slice sampling procedure described in the Paragraph “Slicing for the Z-

Component” above.

(b) If zmin
t = zmax

t , set T ← t and go to step (2) (coalescence).

(c) Otherwise, set t← t− 1 and go to step (1) (a)

(2) Draw γT ∼ Γ|(Y , Z = zT) using the support set coupling from Section 5.3.1.

(3) For each time t = T + 1, . . . ,−1, 0 (outer Gibbs sampler)

(a) Draw zt ∼ Z |(Y ,Γ = γt−1) using the slice sampling procedure from the

above Paragraph “Slicing for the Z-Component”.

(b) Draw γt ∼ Γ |(Y , Z = zt) using the support set coupling from Section 5.3.1

(inner Gibbs sampler).

(4) (γ0, z0) is a draw from the posterior (5.11)!

5.3.3 Random Variance, Random Coefficients

In this section, we incorporate both a random variance and random coefficients

with prior distributions according to (5.3) and (5.4). While we originally treated the

case of a fixed variance and random coefficients separately, we have realized that that

case can be collapsed into the more general case of this section.

85

Combining γ and θ

To reduce the size of the state space, we combine the random components γi and

θi by defining βi := γiθi (i = 1, . . . , r) to have the appropriate mixture distribution.

Ultimately, since we are maximizing a marginal distribution, we are only interested in

the values for γ which can be “recovered” from β by setting

γi =

0 if βi = 0

1 if βi 6= 0

i = 1, . . . , q.

Let g > , Z(β, z) denote the joint pdf for the prior distribution on β = (β1, . . . , βr)
′ and

z which satisfies

g > ,Z(β, z) = g > |Z(β|z)gZ(z) ∝ g > |Z(β|z)× z
ν
2
−1 exp{−λν

2
z},

where g > |Z(β|z) denotes the density for the distribution where β ∼ N(ξ, 1
zV), but each

component βi = 0 with probability 1
2 (i = 1, . . . , r).

After combining γ and θ, the likelihood can be written as

L(β, z) = z
n
2 exp{−z

2
(y −

r
∑

i=1

βixi)
′(y −

r
∑

i=1

βixi)}

and the posterior distribution we want to draw from is given by

π > ,Z| = (β, z|y) ∝ L(β, z) × g > ,Z(β, z). (5.15)

Using IMH

To simulate from the posterior (5.15), we apply the “bounded” version of the

IMH algorithm from Section 3.3.2. We choose q(β, z) ∝ z
ν
2
−1g > ,Z(β, z) as the can-

didate distribution since with this choice, the π
q ratio satisfies max π

q = max
(? ,z)

L(? ,z)

z
n
2

=

max
(? ,z)

exp{− z
2 (y −

r
∑

i=1
βixi)

′(y −
r
∑

i=1
βixi)} ≤ 1.

86

Sampling from the Candidate

Using what we call hierarchical sampling (which is described in some detail in

Appendix B), we can implement the following steps to get samples (z,β) ∼ q(β, z)

(1) draw Z ∼ Γ(n+ν
2 , λν

2),

(2) draw B|Z ∼ N(ξ, 1
zV),

(3) set βi = 0 with probability 1
2 (i = 1 . . . , q).

Since we can simulate from the candidate density q(β, z), we can specify the IMH

algorithm to simulate from (5.15).

(1) Find a backward coupling time T : for each time t = 0,−1,−2, . . .

(a) Draw (βt, zt) ∼ q(·) and ut ∼ Uniform(0, 1).

(b) If ut ≤ L(βt) · 1, set T ← t and go to step (coalescence).

(c) Otherwise, set t← t− 1 and go to step (1) (a).

(2) Set XT = qT and for each time t = T + 1, T + 2 . . . , 0:

(a) If ut ≤ L(Xt−1)
L(? t)

(accept the candidate), set Xt = (βt, zt).

(b) Otherwise (reject the candidate), set Xt = Xt−1.

(c) Set t← t + 1.

(3) X0 is a draw from the posterior (5.15)!

5.4 Simulation Results

To test the performance of the algorithms, we used simulated data to mimic

the scenario of the different models. In all cases, the predictors xi were generated

independent and identically distributed according to xi ∼ N(0, I), i = 1, . . . , r.

87

For each different model, we describe in detail how the test data was produced.

Results are presented by listing the frequencies for the γ-vectors as well as specifying

the marginal probabilities for each component γi. To discuss computational cost we list

the average, the minimum, and the maximum backward coupling time.

5.4.1 Fixed Variance, Fixed Coefficients

This case has been solved and tested in [31]. We include our test results for

completeness. We used q = 5 predictors and generated n = 20 data records the following

way: After simulating a noise vector ε ∼ N(0, σ2I) of size 20 (σ2 was set to 1), the

data was computed by assigning y =
∑5

i=1 γiθixi + ε with θ = (0.8, 0.7, 0.7, 0.7, 0.9)′

and γ = (1, 0, 0, 1, 0)′ .

With 1000 i.i.d. samples from the posterior (5.6), we obtained results shown in

Table 5.1. The average backward coupling time for the Gibbs sampler was T = 1.686

with a minimum of T = 1 and a maximum of T = 3.

The results show that the algorithm could easily recover which of the predictors

had been part of the model. Both lists clearly reveal the γ-vector that has been used

to generate the data y.

Table 5.1: Results for 1000 i.i.d. draws from the posterior (5.6) with fixed variance and
fixed coefficients.

γ percentage

(1,0,0,1,0) 92.9 %

(1,1,0,1,0) 4.7 %

(1,0,0,1,1) 1.2 %

(0,0,0,1,0) 0.6 %

(1,0,1,1,0) 0.3 %

(0,1,0,1,0) 0.1 %

(1,1,1,1,0) 0.1 %

(1,0,0,0,1) 0.1 %

component percentage

P (γ1 = 1) 99.3 %

P (γ2 = 1) 4.9 %

P (γ3 = 1) 0.4 %

P (γ4 = 1) 99.9 %

P (γ5 = 1) 1.3 %

88

5.4.2 Random Variance, Fixed Coefficients

To test this case, we simulated a value z according to Z ∼ Γ(ν
2 , λν

2) and used

σ2 = 1
z as the variance for the noise vector ε. We again used q = 5 predictors, but

this time generated n = 50 data records. The coefficient vector of the model was

θ = (1.2, 1.3, 1, 1.1, 1.2)′ and the hyperparameters were chosen to be λ = 1 and ν = 1.

The predictors that went into the model were determined by γ = (1, 0, 0, 1, 0)′ .

After 1000 i.i.d. draws from (5.11), we obtained the results shown in Table 5.2 (we

only list realizations of γ that had a frequency of 1% or more). The average backward

coupling time for the coupling the z-component (outer Gibbs sampler) was T = 30.091

with a minimum of T = 1 and a maximum of T = 366. For the inner Gibbs sampler, i.e.

for the support set coupling to draw the γ-component – the average backward coupling

time was T = 1.141 with a minimum of T = 1 and a maximum of T = 3. In this case,

the algorithm also detected the right predictors, with the second most frequent model

only occurring half as often as the true one. Again, the marginal probabilities for each

component γi clearly point to the correct γ-vector.

Table 5.2: Results for 1000 i.i.d. draws from the posterior (5.11) with random variance
and fixed coefficients.

γ percentage

(1,0,0,1,0) 37.8 %

(1,0,1,1,0) 18.2 %

(0,0,0,1,0) 11 %

(1,0,0,1,1) 8.9 %

(1,0,0,0,0) 5.1 %

(0,0,1,1,0) 3.5 %

(1,1,0,1,0) 3.1 %

(1,0,1,1,1) 2.3 %

(1,0,1,0,0) 1.6 %

(1,0,0,0,1) 1.3 %

(0,0,0,1,1) 1 %

component percentage

P (γ1 = 1) 80.9 %

P (γ2 = 1) 6.5 %

P (γ3 = 1) 28.7 %

P (γ4 = 1) 88.9 %

P (γ5 = 1) 15.7 %

89

5.4.3 Fixed Variance, Random Coefficients

While we ranked this case under the most general case using an IMH algorithm

when specifying a perfect algorithm to sample from the posterior, we still decided to

include simulation results separately. This case was tested with q = 5 predictors and

n = 20 data records. We generated 20 coefficient vectors θ according to Θ ∼ N(ξ, σ2I)

with ξ = (1, 1, 1, 1, 1)′ and σ2 = 0.5 which was also used as the variance for the noise

vector ε. The predictors that went into the model were determined by γ = (1, 0, 0, 1, 0) ′ .

After 100 i.i.d. draws from we obtained the results shown in Table 5.3. The

average backward coupling time for the IMH algorithm was T = 429842.21 with a

minimum of T = 8809 and a maximum of T = 2601550. Note that the high backward

coupling times in this model do not allow to go to much higher dimensions. It is possible

that this drawback may be overcome with the idea of a multistage coupler which is a

subject of future work. See Section 7.2.2 for more details on the multistage coupler.

Despite the small number of samples, the algorithm clearly yields the correct model.

Table 5.3: Results for 100 i.i.d. draws from the posterior with fixed variance and random
coefficients.

γ percentage

(1,0,0,1,0) 59 %

(1,0,0,1,1) 28 %

(1,1,0,1,0) 6 %

(1,0,1,1,0) 4 %

(1,0,1,1,1) 2 %

(1,1,0,1,1) 1 %

component percentage

P (γ1 = 1) 100 %

P (γ2 = 1) 7 %

P (γ3 = 1) 6 %

P (γ4 = 1) 100 %

P (γ5 = 1) 31 %

5.4.4 Random Variance, Random Coefficients

We used q = 3 predictors and n = 20 data records. The mean vector for the

coefficients was given by ξ = (1, 1, 1)′ and the hyperparameters were chosen to be

90

λ = 10, ν = 1, and V = I. The predictors that went into the model were determined

by γ = (1, 1, 0)′.

After 100 i.i.d. draws from (5.15), we obtained the results shown in Table 5.4. The

average backward coupling time for the IMH algorithm was T = 542.8 with a minimum

of T = 2 and a maximum of T = 4257. Due to the very large backward coupling times

of the IMH algorithm in higher dimensions, we chose only 3 predictors and 20 data

records in this case. Again, the multistage coupler described in Section 7.2.2 might help

to reduce these coupling times. Once again, the algorithm clearly detected the correct

γ-vector.

Table 5.4: Results for 100 i.i.d. draws form the posterior (5.15) with random variance
and random coefficients.

γ percentage

(1,1,0) 34 %

(1,0,0) 18 %

(1,1,1) 18 %

(0,1,0) 13 %

(0,1,1) 9 %

(0,0,1) 3 %

(1,0,1) 3 %

(0,0,0) 2 %

component percentage

P (γ1 = 1) 73 %

P (γ2 = 1) 74 %

P (γ3 = 1) 33 %

5.5 Testing on the Hald Data Set

We now present results using the algorithm from Section 5.3.3 for the Hald data

set. This data set describes the effect of the composition of cement on heat evolved

during hardening. The heat evolved is important since it determines how quickly the

cement dries. It is originally taken from Woods et al. [61], but has been used in many

other references including Hald [27], Draper and Smith [13], and George and McCulloch

[23]. A description can also be found at [28].

91

The Hald data consists of n = 13 observations on the dependent variable (heat)

and q = 4 predictor variables which relate to the composition of the cement (tricalcium

aluminate, tricalcium silicate, tetracalcium alumino, ferrite dicalcium silicate).

Mimicking the choice as hyperparameters in [23] (although the variable selection

model is set up differently to our framework), we pick V = cI (with three different

values for c, c = 1, 5, and 10), ξ = (0, 0, 0, 0)T , λ = 10000, and ν = 1.

While George and McCulloch [23] get different model results for different prior

parameters, our problem formulation and/or algorithm seems to yield more stable out-

come. Our results would imply that the tricalcium silicate component is directly linked

to the shortest hardening time of the cement.

92

Table 5.5: Results for 100 draws for the Hald data set and different prior parameters.

c = 1

γ percentage

(0,1,0,0) 69 %

(1,1,0,0) 14 %

(1,0,1,0) 13 %

(0,1,1,0) 3 %

(0,1,0,1) 1 %

component percentage

P (γ1 = 1) 27 %

P (γ2 = 1) 87 %

P (γ3 = 1) 16 %

P (γ4 = 1) 1 %

c = 5

γ percentage

(0,1,0,0) 96 %

(1,1,0,0) 1 %

(0,0,1,0) 1 %

(1,0,1,0) 1 %

(0,1,1,0) 1 %

component percentage

P (γ1 = 1) 2 %

P (γ2 = 1) 98 %

P (γ3 = 1) 3 %

P (γ4 = 1) 0 %

c = 10

γ percentage

(0,1,0,0) 99 %

(1,0,0,0) 1 %

component percentage

P (γ1 = 1) 1 %

P (γ2 = 1) 99 %

P (γ3 = 1) 0 %

P (γ4 = 1) 0 %

Chapter 6

Perfect Stochastic Summation in High Order Feynman Graph

Expansions

I think that I can safely say that nobody understands quantum me-
chanics.

Richard Feynman, The character of physical law [14].

6.1 Introduction

The interacting fermion problem [18, 33, 44] is of fundamental importance in a

wide range of research areas, including fields as diverse as electronic structure theory

of solids, strongly correlated electron physics, quantum chemistry, and the theory of

nuclear matter. The ultimate objective of this project, which is a massive collaborative

effort between physicists, statisticians, and computer scientists, is to combine Monte

Carlo summation techniques with self-consistent high-order Feynman diagram expan-

sions into an efficient tool for the controlled approximate solution of interacting fermion

models.

The concept of self energy is one of the most important examples of the power

of Feynman diagram resummation. Suppose, for example, that we have a lattice of

atoms (such as in the case of a crystal) where electrons are almost localized in atomic

orbitals at each site. Suppose further that we create a particle at one site and destroy a

particle at another site thereby adding and removing a quanta of vibrational energy to

94

the system. Electrons of opposite spin occupying a single atom give rise to a Coulomb

repulsion energy which causes particles to hop between sites. There is a contribution

to the energy of the particle due to the virtual emission and absorption of particles.

In other words, the particle interacts with its surrounding medium which, in turn, acts

back on the particle. Essentially, a “wake” of energy is created around the movement

of the particle. It is this self energy, described in more detail in Section 6.2, that we

would like to quantify.

Self energy is represented as a large and complicated sum (“outer sum”) of terms

that are, in themselves, large and complicated sums (“inner sums”). The objective

of this chapter is to describe the evaluation of these inner sums via a Monte Carlo

approach. Monte Carlo summation techniques, detailed in Section 6.3, involve evalu-

ating an approximating sum at random points drawn from a particular distribution.

While there is much flexibility in the choice of this distribution, some choices are better

than others in terms of minimizing the (first level) error in the approximating sum.

The downside to choosing a nearly optimal distribution is that we often cannot sample

points from it directly and are faced with a second level of error (sampling error) result-

ing from a Monte Carlo sampling approach. We choose a nearly optimal complicated

distribution, yet sample from it using perfect simulation techniques (more precisely, the

IMH algorithm 1) to completely eliminate the second level error.

This chapter is organized as follows. In Section 6.2, we formulate and state

the problem, describe to a certain extent the physical quantities that are involved,

and discuss computer-friendly representation of the information needed from Feynman

diagrams. Section 6.3 gives a general introduction to Monte Carlo techniques.

We show the core of our work in Section 6.4. We present the groundwork to apply

Monte Carlo methods for computing self-energy in Section 6.4.1, while Section 6.4.2

1 As in the previous chapter, by “IMH algorithm” we again refer to the perfect version from Sec-
tion 3.3.1.

95

concerns using the IMH algorithm for this problem. We depict how to approximate

a required proportionality constant in Section 6.4.3, and weaken a previously made

restriction of one of the parameter spaces in Section 6.4.4.

Simulation results are given in Section 6.5 and Section 6.6. In the latter section we

discuss the idea of conditional averaging (Section 6.6.1) and the bounded IMH algorithm

(Section 6.6.2) from Section 3.3.2 to address some computational issues with the Monte

Carlo sum.

6.2 Self Energy, Feynman Diagrams, and Computer-Friendly Rep-

resentation

The Hubbard model was originally developed in the early sixties in order to

understand the magnetic properties of electron motion in transition metals. The original

model remains a subject of active research today, and it is within this context that we

describe our numerical approach. (The approach applies, with minor adaptations, to

all interacting fermion models which possess a Feynman diagram expansion in terms of

a two-body interaction potential.)

Suppose we have a lattice of atoms, representing atoms in a crystal, where elec-

trons are almost localized in atomic orbitals at each site (see Figure 6.1). We consider

the following Hamiltonian model governing the motion and interactions between the

particles.

H =
∑

j′,j

1

2
Vj′,j nj′ nj −

∑

j′,j

∑

σ

tj′,j c†j′σcj σ (6.1)

96

Here

c†j′σ = creation operator that creates an electron of spin σ =↑, ↓ at site j ′

cj σ = destruction operator that destroys an electron of spin σ =↑, ↓ at site j

c†j′σ cj σ = transfers an electron of spin σ from site j to site j ′

nj = the number of electrons at site j.

Vj′j is called the model Coulomb potential and it includes the on-site (j ′ = j)

Coulomb repulsion energy (U) generated when two electrons of opposite spin occupy a

single atom as well as possibly extended (1st, 2nd, . . . neighbor) repulsions.

tj′j is a parameter that controls an electron’s ability to tunnel or “hop” between

sites. If orbitals are highly localized, then this tunneling amplitude will decay expo-

nentially with distance between sites. tj′j includes the on-site (j ′ = j) energy of the

electron, a nearest neighbor tunneling amplitude (t) and possibly extended (2nd, 3rd

. . . neighbor) tunneling amplitudes.

The total energy, given by (6.1), of this Hubbard model is thus represented as a

sum of potential and kinetic energy given by the first and second terms, respectively, of

(6.1). Both Vj′j and tj′j are assumed to obey period boundary conditions on a finite

lattice defined in Section 6.2.1.

6.2.1 Self Energy and Feynman Diagrams

The concept of self energy enables us to understand the feedback of the interacting

environment on a propagating particle. Physically, it describes the cloud of particle-hole

excitations that form the wake which accompanies a propagating electron.

The following paragraphs describe how to obtain the self energy σ(k). Basically,

we will depict σ(k) through Feynman graph expansions and represent it as is a sum

(of sums) involving Green’s functions. (These Green’s functions will in turn involve the

self energy σ(k) we are trying to compute – how to deal with this issue is addressed in

Section 6.4.) We also refer the reader to Table 6.1 which contains a summary of the

97

Illustration of the Hubbard model. The amplitude for an electron to hop from site to
neighboring site is t and the Coulomb repulsion energy generated by two electrons of
opposite spins at the same site is U .

Figure 6.1: The Hubbard model

98

symbols used in this section.

Green’s function G(k)

The single-fermion Green’s function G(k) is the most basic physical quantity

which can be obtained via a Feynman graph expansion. As it is expressed in terms of

self energy, which we will denote by σ(k), we will describe our approach within this

context. Here k ≡ (~k, iν) denotes a D + 1 - dimensional “momentum-energy” variable

(referred to as “momentum” hereafter), where ~k is a D-dimensional “wavevector” and

iν represents a frequency. These variables will be described in more detail later.

In general, a Green’s function is the response of a linear system to a point input.

Diagrammatically, we can represent the single-fermion Green’s function, or propagator,

as a sum of free propagators G0 with various inserted scattering processes. (Mathemati-

cally, a propagator is simply an integral kernel.) The self energy represents all scattering

processes combined into a single quantity. We depict the Green’s function in terms of

the self energy in Figure 6.2.

The self energy is in turn represented as a sum of Feynman diagrams as shown in

Figure 6.3. These diagrams, developed by physicist Richard Feynman, give a convenient

shorthand for representing complex mathematical quantities. The “wavy” lines repre-

sent photons that are emitted or absorbed by an electron traveling along the straight

lines. Assignments of values to the momentum are made on various sections of the

diagrams which correspond to arguments of functions in the algebraic self energy ex-

pression.

= + Σ + Σ Σ + ...G(k)

Figure 6.2: Representing a Green’s function as a sum of free propagators with inserted
scattering processes

99

(k) = Σ

...++++

Figure 6.3: Representing self energy as a sum of Feynman diagrams

Algebraically, the free propagator has the form

G0(k) = G0(~k, i ν) =
1

i ν − ε(~k)

where ε(~k) is the electron energy band

ε(~k) = −µ− 2t
D
∑

d=1

cos(k(d)),

and D is the lattice dimension. Here, µ and t are, respectively, the on-site electron

energy (chemical potential) and nearest neighbor tunneling amplitude, discussed above

in the description of the Hubbard model, and k(j) is the jth element of ~k. ε(~k) is simply

the Fourier transform of tj′j in the case that only 1st neighbor tunneling and on-site

energy are included in tj′j.

Following the Green’s function representation from Figure 6.2, we may write

G(k) = G0 + G0σG0 + G0σG0σG0 + · · ·

= G0 + G0σG0 + G0(σG0)
2 + · · ·

=
1

G−1
0 − σ

by summing the Taylor series expansion in powers of (σG0).

This is known as the Dyson equation [33, 44] and can be written as

G(k) = G(~k, i ν) = [i ν − ε(~k)− σ(k)]−1. (6.2)

100

Self energy

The self energy σ(k) is obtained self-consistently via a Feynman graph expansion

in terms of G and the interaction potential V . As illustrated in Figure 6.4 for orders

n = 1 and 2, an nth order σ-graph consists of n non-directional wavy lines (referred to as

“V -lines” hereafter) and of 2 external and 2n−1 internal directed straight lines, (referred

to as “G-lines” hereafter). One incoming and one outgoing G-line is attached to each

endpoint (“vertex”) of each V -line. The σ(k)-contribution for each graph is given by

the Feynman rules [33, 44] so that for k ≡ (~k, i ν) and kv ≡ (~kv , i νv) (v = 1, 2, 3, . . .),

σ(k) =
nmax
∑

n=1

∑

g∈Gn

(−T

N

)n
∑

k1,...,kn∈K

F (n)
g (k, k1, . . . , kn). (6.3)

Here, Gn denotes the set of all topologically distinct ”G-irreducible” σ-graphs g of order

n, where g is defined to be G-irreducible (G-reducible) if and only if it cannot (can)

be severed into two disjoint pieces by cutting no more than two internal G-lines, as

illustrated in Figure 6.4.

k2

2 1 2

1

3 1k = k + k − k2

k

(c)(b)(a) (d) (e)

k

q = k − k1q = k − k1

Shown are all G-irreducible σ-graphs of order n = 1, in (a) and (b), and of order n = 2, in
(c) and (d), as well as a selected G-reducible graph of order n = 2, in (e). In (c), a possible
k-assignment is also shown. In (e), vertical arrows indicate the “cuts” which separate the
graph into two disjoint pieces.

Figure 6.4: Feynman Diagrams

Summation domains

The ~kv-summation domain is the set B of ~k- grid points in the first Brillouin zone:

B := {~k = (k(1), . . . , k(D)) | k(d) =
2πmd

Ld
,md ∈ Ld for d ∈ 1, . . . , D} (6.4)

101

with

Ld := {−b(Ld − 1)/2c,−b(Ld − 1)/2c + 1, . . . , bLd/2c},

where b·c is the greatest integer function and Ld denotes the integer sidelength of the D-

dimensional finite lattice prism in the dth coordinate direction. N is the total number

of sites j in the lattice, hence

N =
D
∏

d=1

Ld.

The i ν-summation domain is the set M of odd Matsubara frequencies:

M := {i ν | ν = (2m0 + 1)πT , m0 an integer} (6.5)

where T denotes the temperature of the physical system.

The inner sums in (6.3) are therefore taken over K := B ×M, and the summand

F
(n)
g (k, k1, . . . , kn), for n ≥ 1, contains the internal G- and V -line factors of graph g:

F (n)
g (k, k1, . . . , kn) = (−(2sf + 1))lg exp(δn,1 i ν 0+)

2n−1
∏

u=1

G(ku) ×
n
∏

x=1

V (qx). (6.6)

Here, the momenta ku and qx associated with the G- and V -lines, respectively, are

determined by the graph’s topology, via momentum conservation rules at each ver-

tex, as illustrated in Figure 6.4(c). Only the first n of the internal G-line k-variables,

k1, . . . , kn can be chosen and summed over independently; the remaining k-variables,

kn+1, . . . , k2n−1, and all q-variables, q1, . . . , qn, are linear combinations of the external

k and of k1, . . . , kn.

Finally, V (q) denotes the Fourier transform of the interaction potential V of our

lattice model:

V (q) = V (~q) := N−1
∑

j′ j

e−i~q·(~rj′−~rj)Vj′ j (6.7)

where ~rj denotes the position vector of site j. Note that q is a momentum variable

with a wavevector component in B and a frequency component (q = (~q, i ν)). The

frequency component is not in the set of odd Matsubara frequencies (i.e. q /∈ K),

102

however as V (q) is independent of the frequency component, we will not describe the

domain here. Remaining parameters and are described in Table 6.1 where all parameters

and quantities addressed thus far are also summarized.

The purpose of this chapter is to give a “perfect” Monte Carlo approach that

will perform the innermost summation in (6.3). Our collaborators address

the other summations in [58].

6.2.2 Computer-Friendly Representation

Computationally, each Feynman graph g ∈ Gn in (6.3) can be conveniently rep-

resented by labeling each vertex by an integer n ∈ {1, 2, . . . , 2n}, in such a manner that

v and v + 1 denote endpoints of the same V -line if v is odd. Additionally, the origin

of the incoming external G-line and the terminus of the outgoing external G-line are

labeled v = 0 and v = 2n + 1, respectively. The complete topology (connectivity) of

the graph can then be specified by a “linkage list”, [w(v)]2n
v=0, where w(v) is the integer

label of the terminating vertex of the G-line that originates at vertex v. The integer v

then also serves as a convenient label of all G-lines: “v” is that G-line which originates

from vertex v for v ∈ {1, 2, . . . 2n}, with v = 0 labeling the incoming external G-line.

Using the notation [w−1(v)]2n+1
v=1 for the inverse assignment, an example for a graph of

order n = 2 is shown in Figure 6.5.

The assignment of k and q variables corresponding to the internal G- and V -lines

in (6.6) can be represented by a pair of “k-assignment” lists, σG(u, v) and σV (x, v), such

that

ku =
n
∑

v=0

σG(u, v) kv and qx =
n
∑

v=0

σV (x, v) kv (6.8)

for u ∈ {1, 2, . . . , 2n − 1} and x ∈ {1, 2, . . . , n} with k0 ≡ k. Given the graph’s linkage

list (and its inverse w−1), the σG’s and σV ’s are constructed to satisfy momentum

103

Table 6.1: Summary of symbols

notation meaning add. information

D
number of dimensions of the
lattice

Ld

integer sidelength of the lat-
tice in dimension d, (d =
1, 2, . . . , D)

B set of points in the 1st Bril-
louin zone

given by (6.4)

N number of points in B

M set of odd Matsubara fre-
quencies

given by (6.5)

k ≡ (~k, i ν) ∈ K = B ×M momentum-energy variable
(momentum)

consists of a wavevector ~k ∈
B and a frequency i ν ∈ M;
associated with
“G-lines” (straight lines) in
the Feynman diagrams

k1, k2, . . . elements of K

k(1), k(2), . . . , k(D) components of a vector ~k ∈
B

σ(k) self energy given by (6.3)

G(k) Green’s function given by (6.2)

q ≡ (~q, i ν), ~q ∈ B momentum-energy variable
(momentum)

consists of a wavevector ~q ∈
B and a frequency i ν; asso-
ciated with “V -lines”(wavy
lines) in the Feynman dia-
grams

Vj′j model interaction potential
repulsion energy generated
by electrons

V (~q)
Fourier transform of interac-
tion potential

given by (6.7)

lg
number of closed G-loops in
graph g

Figure 6.4, lg = 1, 0, 0, 1, 0
for (a), (b), (c), (d), and (e),
respectively

sf
single-fermion spin quantum
number

sf = 1
2 for non-spin-

polarized electrons

δij Kronecker delta 1 when i = j, zero otherwise

nmax

the highest order graphs
that will be considered in
computing σ(k)

F
(n)
g (k, k1, . . . , kn) the summand of σ(k) given by (6.6)

104
−1

v w(v) w (v)

3 2 1

4 5 2

5 − 4

0 51 23 4

0 1 −

2 4 3
1 3 0

Figure 6.5: Representing a Feynman diagram as a linkage list.

conservation at each vertex. For the endpoints of V -line x ∈ {1, 2, . . . , n}, that is, for

vertices v = 2x− 1 and v = 2x, respectively,

k2x−1 + qx = kw−1(2x−1) and k2x = qx + kw−1(2x). (6.9)

We have adopted the convention that the (usually non-directional) V -line x carries

momentum qx from vertex 2x− 1 towards vertex 2x and k0 = k2n ≡ k. The resulting

σG(u, v) and σV (x, v) take on values 0, +1, and −1 only, with σG(u, v) = δu,v for

u = 0, 1, . . . , n, as illustrated in Figure 6.4(c).

Preliminary steps for this labeling procedure consists of setting up tables with

topologies of all irreducible diagrams. This task has been carried out using a depth first

search algorithm program developed by Robert Robinson and coworkers (Robinson,

private communication).

With this program, we are able to compute the number of irreducible diagrams for

any given order. Table 6.2 gives these numbers up to order 30. Ultimately, we include

in our calculations all diagrams up to some prespecified and fixed order nmax. As the

contributions of diagrams to ((6.3) become exponentially small with increasing order,

the contributions of very high order diagrams will become negligible when compared to

the statistical error of the Monte Carlo sum.

105

Table 6.2: Number of irreducible Feynman diagrams of order n, n = 1, 2, . . . , 30

n Number of Irreducible Graphs of Order n

1 2
2 2
3 10
4 82
5 898
6 12018
7 187626
8 3323682
9 65607682

10 1424967394
11 33736908874
12 864372576626
13 23825543471234
14 703074672632018
15 22118247888976170
16 739081808704195650
17 26146116129400483842
18 976382058777174451650
19 38386296866727499728522
20 1584986693941237056394386
21 68581486271828442449029506
22 3103400608176999567390207666
23 146590637383801346734328051562
24 7215429954884025583945405736802
25 369497732954045370736682490044418
26 19656721052188233635666361136506018
27 1084829370056105520244895442117978826
28 62030456805440999734369445536191672754
29 3670462157003477448177381929142409410178
30 224502553026493195585402880052982012256402

106

6.3 Monte Carlo Summation

We are often faced with integrals (or sums) that cannot be computed analytically.

In the case of multidimensional integrals, even the simplest methods of approximation

by discretization can become prohibitively expensive. Monte Carlo integration provides

an alternative approximation technique.

Suppose we wish to evaluate the integral

I(g,A) =

∫

A
g(x)dx (6.10)

for some integrable function g : IRn → IR and some set A ⊆ IRn. Let π(x) be any

probability density function whose support contains A. Then we may write

I(g,A) =

∫

A
g(x)dx =

∫

IRn

g(x)1lA(x)dx =

∫

IRn

g(x)1lA(x)

π(x)
π(x)dx

where 1lA(x) is the indicator function. We shall refer to π(x) as the weight function and

the remaining part of the integrand as the score function.

Now if X is a random variable with density π(x), we find that we have written

the integral as an expected value

I(g,A) = E

[

g(X)1lA(X)

π(X)

]

. (6.11)

A basic Monte Carlo integration technique is to simulate independent and iden-

tically distributed (i.i.d.) values drawn from the distribution with density π(x), say

X1, X2, . . . , Xn
iid∼ π

and to estimate the probability weighted average given in (6.11) by

Î(g,A) =
1

n

n
∑

i=1

g(Xi)1lA(Xi)

π(Xi)
. (6.12)

Clearly, by (6.11), this is an unbiased estimator of I(g,A).

107

Since the variance of this estimator is

V [Î(g,A)] =
1

n
V

[

g(X)1lA(X)

π(X)

]

=
1

n
E

[

(

g(X)1lA(X)

π(X)
− I(g,A)

)2
]

,

the variance is minimized by choosing

π(x) =
|g(x)|1lA(x)

∫

IRn |g(x)|1lA(x) dx
. (6.13)

Specifically, we choose

π(x) =

|g(x)|@
A
|g(x)| dx

x ∈ A

0 x /∈ A.

(6.14)

Of course, if we could compute the denominator for this optimal “weight”, it is likely

that we could have solved our original problem and there is no need to use a Monte

Carlo approach to compute the integral in (6.10). Hence, we may consider taking a

different, non-optimal candidate weight, keeping in mind that we would like to at least

choose something that attempts to mimic the shape of g. We point out that while we

may usually sample from (6.14) without knowing the constant of proportionality, (for

example using the Metropolis-Hastings algorithm), we ultimately require the constant

in order to evaluate (6.12).

6.4 Perfect IMH in the Context of this Self Energy Problem

We now describe the IMH algorithm for computing the innermost sum in (6.3)

for the second order diagram depicted in Figure 6.4(c) and Figure 6.5. Ignoring the

physical constants, we would like to compute

σ2(k) :=
∑

k1,k2∈K

3
∏

u=1

G(ku) ×
2
∏

x=1

V (qx). (6.15)

108

Using momentum conserving assignments, described in Section 6.2.2 and shown

in Figure 6.4(c), this becomes

σ2(k) =
∑

k1,k2∈K

G(k1) ·G(k2) ·G(k2 + k − k1) · V (k − k1) · V (k1 − k2). (6.16)

Recall that each k, k1, k2 is a D+1-dimensional with the vector of the first D components

coming from B as described in (6.4) and the third component taking values in

M := {i ν | ν = (2m0 + 1)πT , m0 an integer}.

As a computational simplification, we will truncate M to a finite space MT . (We

address alternatives in Section 6.4.4.) This will allow us to choose a trivial candidate

distribution for the IMH algorithm where, more importantly, we can easily maximize

the h/q ratio described in (3.3) in Section 3.3.1 in order to identify the lowest state l

needed to carry out the algorithm. For physical reasons, it is necessary to truncate M

in a symmetric way, say

MT = {i ν | ν = (2m0 + 1)πT , m0 ∈ {−l,−l + 1, . . . , l − 1}}

for some positive integer l.

The astute reader may have noticed by now that we are trying to compute σ2(k)

which is a term of σ(k), given by (6.3), which is itself involved in the Green’s function

(6.2), which is in our expression for σ2(k). This is handled with standard feedback

methods described in [58], [45], and [41] where one

(1) starts by setting σ(k) ≡ 0 in (6.2) so that G(k) becomes

G(k) = G(~k, i ν) = [i ν − ε(~k)]−1, (6.17)

(2) carries out the entire Monte Carlo procedure to compute (6.3) which consists

of the procedures of this paper for the “inner (single-diagram) sum” and the

procedures of [58] for the “outer sums” which move through diagram orders and

diagrams within an order,

109

(3) uses the resulting σ(k) to update the Green’s function before returning to step

(2) and repeating the entire combined Monte Carlo procedure.

This approach is repeated until consecutive updates of the Green’s function co-

incide within a given limit of accuracy. As this paper is concerned with computing the

self energy contribution for single diagrams only, we will use a fixed Green’s function.

For simplicity, we use (6.17).

6.4.1 The Monte Carlo Sum

For the Monte Carlo summation, we propose as a weight function the product of

the magnitudes of the Green’s functions

|G(k1)| · |G(k2)| · |G(k2 + k − k1)|. (6.18)

However, since this involves the input external momentum k, it would be inefficient to

focus exclusively on this weight. In order to have a single weight function for any input

momentum, we again rewrite our summation goal from (6.16) to

σ2(k) =
∑

k1,k2,k0∈K

V (k − k1) · V (k1 − k2) · δk,k0 ·G(k1) ·G(k2) ·G(k2 + k0 − k1),(6.19)

where δk,k0 is equal to 1 when k0 = k and equal to 0 otherwise.

Now we may write

σ2(k) =
∑

k1,k2,k0∈K

S(k, k0, k1, k2)W (k0, k1, k2), (6.20)

where W (k0, k1, k2) is the (unnormalized) weight function

W (k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)| (6.21)

and S(k, k0, k1, k2) is the score function

S(k, k0, k1, k2) = δk,k0 V (k − k1) · V (k1 − k2)
G(k1) ·G(k2) ·G(k2 + k0 − k1)

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|
.(6.22)

110

Our “target distribution” from which to draw values for the Monte Carlo sum-

mation described in Section 6.3 is

π(k0, k1, k2) =
1

NW
W (k0, k1, k2) =

1

NW
|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|, (6.23)

where

NW :=
∑

k0,k1,k2∈B×MT

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|. (6.24)

Following Section 6.3 we write

σ2(k) = NW
∑

k0,k1,k2∈B×MT
S(k, k0, k1, k2)π(k0, k1, k2)

= NW E [S(K0,K1,K2)] ,

where (K0,K1,K2) is a random vector with density π(k0, k1, k2).

6.4.2 The IMH Algorithm

We will now describe how to use the IMH algorithm from Section 3.3.1 to draw n

values, (k0i, k1i, k2i), from π(k0, k1, k2). We will use these values both to estimate NW

and to plug them into the Monte Carlo approximation

σ̂2(k) = NW
1

n

n
∑

i=1

S(k, k0i, k1i, k2i). (6.25)

(Note: Due to the large number of symbols in use, we are reclaiming the use of the

letter n throughout Section 6.4 where we are considering a fixed diagram of order 2. In

previous sections, n was reserved for a diagram order.)

The unnormalized target density h is

h(k0, k1, k2) ≡W (k0, k1, k2)

which is given by (6.21).

We choose a simple uniform candidate distribution with density q(k0, k1, k2) which

gives equal weight to all points (k0, k1, k2) ∈ (B ×MT)3.

111

In order to implement the IMH algorithm, it remains to identify the “lowest

point”, (k∗
0 , k

∗
1 , k

∗
2), which is the point in (B × MT)3 that maximizes the ratio h/q.

Since q is constant for all (k0, k1, k2) ∈ (B ×MT)3, we simply want to maximize

h(k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|. (6.26)

Consider first a single factor |G(k)|. Since

|G(k)| = |G(k(1), . . . , k(D), iν)| = |i ν + µ + 2t

D
∑

d=1

cos(k(d))|−1

=

ν2 +

(

µ + 2t
D
∑

d=1

cos(k(d))

)2

−1/2

,

we can maximize |G(k)| by minimizing

ν2 +

(

µ + 2t
D
∑

d=1

cos(k(d))

)2

.

Regardless of where we truncate M, ν2 is minimized for ν = ±πT . (The IMH

algorithm does not require a unique “lowest point”, so we may take either value for ν.)

We minimize
(

µ + 2t

D
∑

d=1

cos(k(d))

)2

with brute force by searching over the (finite) space B. It turns out that we only need to

do this once for the entire self energy calculation. This does not depend on the particular

graph we are considering at any moment and also therefore, just as importantly, does

not depend on the number of k’s associated with a graph.

At this point we have identified a k∗ = (~k∗, i πT) that maximizes |G(k)|. We may

simultaneously maximize all factors in (6.26) by setting each of k0, k1, and k2 to be

k∗. Due to the relationships given by (6.9), we will always be able to simultaneously

maximize all factors in the weight function associated with any Feynman graph in this

way.

(Note: As σ2(k) and ultimately σ(k) is complex-valued, the updated Green’s

function obtained through the feedback procedure described in Section 6.4 will have an

112

imaginary component that is not simply in the set MT . In this case, we will have to

maximize |G(k)| by searching over values for ~k and ν together. This will not necessarily

involve searching over the entire space (B ×MT)3 but rather it can be done with some

finite upper-limit cut-off on |i ν| since for very large i ν, σ(k) is bounded by a constant

independent of i ν. This fact will be especially useful when we want to use the entire

set M (described in Section 6.4.4) as opposed to the truncated set MT .)

6.4.3 Estimating NW

In order to estimate the normalization constant NW , we take advantage of com-

putations already performed within the IMH algorithm. In executing the algorithm,

we are drawing values uniformly from the space (B × MT)3. Hence, letting M :=

#
(

(B ×MT)3
)

denote the number of points in the space, we write NW as

NW =
∑

(B×MT)3

h(k0, k1, k2)

=
∑

(B×MT)3

h(k0, k1, k2)

1/M

1

M

= E

[

h(K0,K1,K2)

1/M

]

= M · E [h(K0,K1,K2)] ,

where (K0,K1,K2) is a random vector with uniform density on (B ×MT)3.

We estimate this expectation by drawing n points uniformly over (B×MT)3 and

computing

N̂W =
M

n

n
∑

i=1

h(k0i, k1i, k2i)

where (k0i, k1i, k2i) are the uniform draws.

6.4.4 Extending the M-Space

In order to execute the IMH algorithm, we need to be able to identify the point

that maximizes h/q where h is the (possibly unnormalized) target density and q is

a candidate density with the same support as h from which we are able to simulate

113

values. The truncation of M is a common practice that simplifies computational cost.

This turned out to be very convenient for us as well since it provided us with a finite

state space that allowed us to choose a very simple uniform candidate density which

exchanged our task of maximizing h/q into the simpler task of maximizing only h.

Another nice feature of this model is that we are able to make MT arbitrarily large

(but finite) without any adjustment, as h is always maximized at ν = ±i πT .

It is possible that one can use the full spaceM provided one chooses a candidate

density q on B ×M for which the maximizing point for h/q can be identified. If this

is not the case, one alternative is to approximate the maximum either with traditional

deterministic optimizers or a stochastic search approach. As illustrated in Section 3.4.1,

using this “imperfect perfect simulation algorithm” may still by superior to traditional

Monte Carlo methods in terms of both accuracy and speed.

6.5 Simulation Results

For each of the following two examples, we use the specific second order diagram

of Section 6.4. To verify our algorithm, we start with a very low dimensional toy example

where our results can be compared to those from brute force calculations.

For both examples we take µ = 0.5, t = 1.0, and the physical temperature to be

T = 2.0.

Example 1

We take D = 2, L1 = L2 = 2, and only two odd Matsubara frequencies. This

means that all of the k’s in (6.16) have 3 components with the first two taking values in

A := {0, π}

and the third taking values in

MT := {−i πT, iπ, T}.

114

Note that B = A×A.

We simulated 100,000 (9-dimensional) values from

π(k0, k1, k2) ∝ h(k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|.

The results were as follows.

(1) Exact NW Versus the Estimate

By brute force summation, we find that the exact value of the normalizing

constant NW is 1.349741. Since there are (2 · 2 · 2)3 = 512 possible values for

(k0, k1, k2), we write

NW =
∑

(k0,k1,k2)

h(k0, k1, k2)

= 512 ·
∑

(k0,k1,k2)

h(k0, k1, k2) ·
1

512

= 512 · E[h(K0,K1,K2)],

where (K0,K1,K2) is a random vector distributed uniformly over (B ×MT)3.

Our estimate is then

N̂W = 512 · 1

m

m
∑

i=1

h(k0i, k1i, k2i)

where (k0i, k1i, k2i) is a particular value generated from the uniform candidate

distribution in our simulation and m is the number of candidates generated.

(To generate 100,000 outcomes we generate more than 100,000 candidates.)

Our simulation produced the estimate

N̂W = 1.349738,

i.e. an absolute error of 3 · 10−6 and a relative error of 2 · 10−6

(2) Comparing Probability Estimates for Various Regions

115

Using the true value of NW , we computed the 512 probabilities associated with

the 512 points in (B ×MT)3. We can then compute, for example

P (k1
(1) = 0) =

1

NW

∑

(k0,k1,k2),k
(1)
1 =0

h(k0, k1, k2) = 0.496334.

In Table 6.3, we compare the true probabilities of seeing value in a given region

of points with the our estimated probabilities. Although we are sampling “per-

fectly” from the target distribution, we are estimating probabilities based on a

finite number of sampled values. All estimates consistently remain well within

two standard errors of the target values.

Table 6.3: Selected true versus estimated probabilities based on a sample of size 100,000.

region true p est. p abs. err. rel. err.

k
(1)
1 = 0 0.4944 0.4989 0.0044 0.0090

k1 = 0, ν2 = πT 0.2472 0.2480 0.0008 0.0032

k
(1)
0 = 0 or k

(2)
1 = 0 0.7472 0.7471 0.0001 0.0002

50 randomly generated points 0.0963 0.0963 0.0001 0.0006

70 randomly generated points 0.1325 0.13167 0.0009 0.0065

100 randomly generated points 0.1996 0.2001 0.0004 0.0023

300 randomly generated points 0.5827 0.5828 0.0000 0.0000

375 randomly generated points 0.7397 0.7387 0.0010 0.0014

400 randomly generated points 0.7885 0.7876 0.0010 0.0012

(3) Backward Coupling Times

In 100,000 draws, the average backward coupling time (the number of time steps

required to achieve a draw from the target distribution) was 1.2 time steps. The

minimum and maximum backward coupling times were 1 and 8, respectively.

Drawing 100,000 values from π(k0, k1, k2) took less than a second on a 450 MHz

Sun SPARC processor.

116

(4) σ2(k)

It remains only to evaluate the score function

S(k, k0, k1, k2) = δk,k0 V (k−k1) ·V (k1−k2)
G(k1) ·G(k2) ·G(k2 + k0 − k1)

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|
.

at the values we have drawn from π(k0, k1, k2) and a fixed external input k in

order to produce the estimate for σ2(k) given by (6.25).

As a simple model potential, we consider

Vj′ j =

4t for j = j ′

t for j and j ′ nearest neighbors

t/
√

2 for j and j ′ second nearest neighbors

0 otherwise.

Here, j and j ′ label the sites of the 4 points in

B = L1 ×L2

and “nearest neighbors” of a site are the four nearest neighbors with periodic

boundary conditions. Recall that our score function contains V (~k) factors where

V (~k) denotes the Fourier transform of the interaction potential:

V (~k) := N−1
∑

j′ j

e−i~k·(~r j′−~rj)Vj′ j (6.27)

where ~rj denotes the position vector of site j and N is the total number of

points in B.

In Table 6.4 we compare the true value of σ2(0, 0, iπT) with simulated values

based on various sample sizes. In Table 6.5 we compare the true value of σ2(k)

for each k ∈ B ×M with simulated values based on a sample of size 100,000.

It should be pointed out that, for this example, the δk,k0 term in the score

function allowed only approximately 12.5% of the simulated values drawn from

π(k0, k1, k2) to contribute to our estimate for σ2(k).

117

Table 6.4: Estimated value of σ2(0, 0, iπT) based on various sample sizes.

True value of σ2(0, 0, iπT) = 0.010954 + 0.997002 i

sample size = 100 abs. err. rel. err. sample size = 1000 abs. err. rel. err.

0.0706 + 1.8947 i 0.8997 0.9023 0.0406 + 1.3259 i 0.3302 0.3312

0.0835 + 1.4858 i 0.4941 0.4956 0.0510 + 1.2857 i 0.2915 0.2923

0.0307 + 0.8488 i 0.1495 0.1450 −0.0025 + 0.9735 i 0.0271 0.0271

−0.0209 + 1.2328 i 0.2380 0.2387 0.0458 + 0.9932 i 0.0350 0.0351

0.1544 + 1.3452 i 0.3766 0.3777 0.0113 + 0.9634 i 0.0336 0.0337

−0.0366 + 0.9466 i 0.0693 0.0695 0.0103 + 1.3237 i 0.3267 0.3277

sample size = 10000 abs. err. rel. err. sample size = 100000 abs. err. rel. err.

0.0122 + 1.0467 i 0.0498 0.0499 0.0108 + 0.9979 i 0.0009 0.0009

0.0130 + 0.9684 i 0.0286 0.0287 0.0109 + 0.9974 i 0.0003 0.0004

0.0108 + 0.9959 i 0.0011 0.0011 0.0107 + 0.9963 i 0.0007 0.0007

0.0110 + 0.9910 i 0.0030 0.0060 0.0109 + 0.9974 i 0.0004 0.0004

0.0118 + 1.1340 i 0.1370 0.1375 0.0110 + 0.9966 i 0.0004 0.0004

0.0200 + 1.0035 i 0.0111 0.0112 0.0101 + 0.9983 i 0.0016 0.0016

Table 6.5: True versus estimated value of σ2(k) based on a sample of size 100,000.

k σ2(k) σ̂2(k) abs. err. rel. err.

(0, 0,−i π T) 0.0110 − 0.9970 i 0.0109 − 0.9961 i 0.0009 0.0009

(0, 0, i π T) 0.0110 + 0.9970 i 0.0110 + 1.0151 i 0.0181 0.0182

(0, π,−i π T) −0.0537 − 2.2951 i −0.0541 − 2.2978 i 0.0027 0.0012

(0, π, i π T) −0.0537 + 2.2951 i −0.0532 + 2.2844 i 0.0107 0.0047

(π, 0,−i π T) −0.0537 − 2.2951 i −0.0542 − 2.2690 i 0.0261 0.0114

(π, 0, i π T) −0.0537 + 2.2951 i −0.0531 + 2.3001 i 0.0051 0.0022

(π, π,−i π T) 0.0155 − 1.1990 i 0.0109 − 1.1839 i 0.0158 0.0132

(π, π, i π T) 0.0155 + 1.1990 i 0.0165 + 1.1952 i 0.0039 0.0033

118

Example 2

We take D = 2, L1 = L2 = 64, and 50 odd Matsubara frequencies. Thus, our

9-dimensional state space has approximately 8.6 × 1015 points, making a brute force

approach rather unappealing.

Drawing 100,000 values from π(k0, k1, k2) took approximately 12 seconds on a 450

MZ Sun SPARC processor.

Our simulation resulted in the estimate

N̂W = 3.483866904037023 × 1010.

It would be of little value in this case to attempt an estimate of σ2(0, 0, i πT) as

the δk,k3 factor would take the value 1 with probability

∑

k1,k2

π((0, 0, i πT), k1 , k2) ≈
1

N̂W

∑

k1,k2

h((0, 0, i πT), k1 , k2).

A very rough upper bound on this is given by

1

N̂W

(64 · 64 · 50)2 max
k1,k2

h((0, 0, i πT), k1 , k2) ≤
1

N̂W

(64 · 64 · 50)2 (max
k
|G(k)|)3

≈ 1

N̂W

(64 · 64 · 50)2 0.1591553 ≈ 0.004854.

Here, maxk |G(k)| was obtained numerically.

However, Monte Carlo simulations give the more realistic estimate

1

N̂W

645603.228730 ≈ 0.000019

In other words, almost none of the values drawn from π(k0, k1, k2) contribute to

the sum. Clearly another approach is needed here, and we provide two alternatives that

address this “low-score problem” by removing the δk,k0 factor. In Section 6.6.1 we use

conditional averaging to change the score function while still using the current weight.

In Section 6.6.2 we change the weight and at the same time reduce the dimensionality

of the problem using the modified IMH algorithm given by step 3(a)′ in Section 3.3.2.

119

6.6 Addressing the Low-Score Problem

6.6.1 Conditional Averaging

In this section, we change the score function (6.22) in order to remove the δk,k0

“spike” while retaining the original weight function.

Recall from (6.20) that

σ2(k) =
∑

k0,k1,k2∈K

S(k, k0, k1, k2)W (k0, k1, k2)

= NW

∑

k0,k1,k2∈K

S(k, k0, k1, k2)π(k0, k1, k2)

where

NW =
∑

k0,k1,k2

W (k0, k1, k2).

Using the conditional density

π(k0|k1, k2) :=
π(k0, k1, k2)

π(k1, k2)

where π(k1, k2) is the marginal density

π(k1, k2) :=
∑

k0

π(k0, k1, k2), (6.28)

we may write

σ2(k) = NW

∑

k0,k1,k2

S(k, k0, k1, k2)π(k0|k1, k2)π(k1, k2) (6.29)

= NW

∑

k1,k2

∑

k0

S(k, k0, k1, k2)π(k0|k1, k2)

π(k1, k2) (6.30)

= NW

∑

k1,k2

S′(k, k1, k2)π(k1, k2) (6.31)

where

S′(k, k1, k2) :=
∑

k0

S(k, k0, k1, k2)π(k0|k1, k2).

Since we are already drawing values from π(k0, k1, k2), we take advantage of the

relationship given by (6.28) to write (6.29) as

σ2(k) = NW

∑

k0,k1,k2

S′(k, k1, k2)π(k0, k1, k2). (6.32)

120

Note that we have removed k0 from the score function and, in particular, we have

removed the troublesome δk,k0 factor.

Replacing k by k0 in (6.22), the original score function has the form

S(k, k0, k1, k2) = δk,k0 R(k0, k1, k2).

Thus, the conditionally averaged score function S ′(k, k1, k2) may be written as

S′(k, k1, k2) = R(k, k1, k2)
π(k, k1, k2)

π(k1, k2)
(6.33)

= R(k, k1, k2)
W (k, k1, k2)

W (k1, k2)
(6.34)

where

W (k1, k2) :=
∑

k′

W (k′, k1, k2). (6.35)

By implementing this conditional averaging approach, we have eliminated the

δk,k0 factor which enables us to make use of all values drawn from π(k0, k1, k2) while

simultaneously reducing the variance of the Monte Carlo estimate for σ2(k). We have,

however, increased computation costs through (6.35) by a factor of L1×L2×· · ·×Ld×

|MT |, where |MT | is the size of MT .

Example 1 Revisited

Once again, we take D = 2, L1 = L2 = 2 and only two odd Matsubara frequencies.

The parameters are µ = 0.5, t = 1.0, and the physical temperature is T = 2.0.

From (6.32) we have that

σ(k) = NW E[S′(k, k1, k2)].

We use the previous estimate

N̂W = 1.349738

and average values of S ′(k, k1, k2) at values for k1 and k2 from draws (k1, k2, k3) from

π(k1, k2, k3) for various sample sizes. Results for 6 different simulation runs are shown

in Table 6.6.

121

Example 2 Revisited

Again, we take D = 2, L1 = L2 = 64 and 50 odd Matsubara frequencies. The

parameters are µ = 0.5, t = 1.0, and the physical temperature is T = 2.0. Using

the conditionally averaged score function, we arrive at the estimate σ̂2(0, 0, i πT) ≈

−285.6363 − 2868.7525 i, which, when multiplied by the constants we have ignored to

this point, contributes

(

2.0

64 · 64

)2

[−285.6363 − 2868.7525 i] ≈ −0.000068 − 0.000684 i

to the self energy σ(k) given by (6.3).

6.6.2 Using IMH Step 3(a)′

In Section 6.5 we used the basic IMH algorithm to draw values from the weight

function given by (6.21) as opposed to the somewhat more natural weight function given

by (6.18)

|G(k2)| · |G(k2 + k − k1)|.

where k is the external user-input momentum vector that is fixed for any given σ2(k)

calculation. The purpose of using (6.21) was so that it would be unnecessary to change

the sampling procedure each time we wanted to change the input k. However, there are

two obvious drawbacks to this approach.

(1) We increase the size of our state space. In this example, we go from having to

sample values for (k1, k2) to having to sample values for (k0, k1, k2).

(2) Even with an efficient approach to sampling from the weight function, the δk,k0

in the score function causes us to effectively discard most of the sampled values.

In Section 6.5, the score function turned out to be zero approximately 87.5% of

the time in Example 1 and almost 100% of the time in Example 2.

122

Table 6.6: Estimated value of σ2(0, 0, i π T) based on various sample sizes using condi-
tional averaging.

True value of σ2(0, 0, i π T) = 0.010954 + 0.9970023 i

sample size = 1000 abs. err. rel. err. sample size = 10000 abs. err. rel. err.

−0.0785 + 0.8776 i 0.1492 0.1496 0.0164 + 0.9388 i 0.0584 0.0586

−0.0206 + 1.2586 i 0.2635 0.2643 −0.1325 + 0.8323 i 0.2184 0.2190

0.2840 + 1.3479 i 0.4445 0.4459 0.0073 + 0.9522 i 0.4495 0.0451

−0.0105 + 1.0547 i 0.0616 0.0618 0.0460 + 1.1042 i 0.1127 0.1131

0.0503 + 0.7586 i 0.2416 0.2423 0.1384 + 1.0787 i 0.1514 0.1518

−0.0306 + 0.9241 i 0.0839 0.0842 0.0108 + 1.0883 i 0.0913 0.0916

sample size = 10000 abs. err. rel. err. sample size = 100000 abs. err. rel. err.

0.0106 + 0.9955 i 0.0016 0.0016 −0.0027 + 0.9906 i 0.0150 0.0151

−0.0176 + 1.0064 i 0.0301 0.0302 0.0107 + 1.0041 i 0.0071 0.0071

0.0385 + 1.0074 i 0.0295 0.0295 0.0114 + 1.0100 i 0.0130 0.0131

0.0140 + 0.9569 i 0.0402 0.0431 0.0155 + 0.9975 i 0.0046 0.0046

0.0170 + 1.0235 i 0.0272 0.0273 −0.0106 + 0.9805 i 0.0271 0.0272

0.0247 + 0.9782 i 0.0233 0.0234 0.0109 + 0.9963 i 0.0007 0.0008

123

In this section, we consider sampling directly from (6.18) in order to avoid the

two drawbacks listed above. We can actually write down a single procedure that is

efficient in the sense that will work for any k if we can accept the trade-off that it may

become inefficient in some cases due to increased backward coupling times. (In some

cases, however they may decrease since we will be making the state space smaller.)

For any fixed k, we write σ2(k) as

σ2(k) =
∑

k1,k2∈K

V (k − k1) · V (k1 − k2) ·G(k1) ·G(k2) ·G(k2 + k − k1)

=
∑

k1,k2∈K

V (k − k1) · V (k1 − k2)
G(k1) ·G(k2) ·G(k2 + k − k1)

|G(k1)| · |G(k2)| · |G(k2 + k − k1)|
Wk(k1, k2)

=
∑

k1,k2∈K

S(k, k1, k2) Wk(k1, k2)

where S(k, k1, k2) is the score function

S(k, k1, k2) :=
V (k − k1) · V (k1 − k2) ·G(k1) ·G(k2) ·G(k2 + k − k1)

|G(k1)| · |G(k2)| · |G(k2 + k − k1)|

and Wk(k1, k2) is the weight function

Wk(k1, k2) := |G(k1)| · |G(k2)| · |G(k2 + k − k1)|.

We wish to use the IMH algorithm to draw values from

π(k1, k2) ∝ h(k1, k2) ≡Wk(k1, k2).

We again choose a simple uniform candidate distribution this time with density q(k1, k2)

which gives equal weight to all points (k1, k2) ∈ (B ×MT)2.

In order to implement the IMH algorithm, it remains to identify the “lowest

point”, (k∗
1 , k

∗
2), which is the point in (B ×MT)2 that maximizes the ratio h/q. Since

q is constant for all (k1, k2) ∈ (B ×MT)2, we simply want to maximize

h(k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k − k1)|. (6.36)

As in Section 6.4.2 we can, after a limited search, identify a point k∗ = (~k∗, i πT) (where

~k∗ is two dimensional) that maximizes |G(k)|. This time however, it is more difficult

124

to simultaneously maximize all factors in (6.36) as we will not necessarily be able to

simply make all three arguments equal to k∗ at the same time. It is not desirable to

search through all k1 and k2 for a fixed k in order to maximize (6.36) for three reasons:

(1) The search would need to be performed again each time we change the external

k.

(2) The search would need to be performed again for every graph included in the

overall summation defining σ(k).

(3) The search space will increase in size with higher order graphs and, with higher

dimensions, (i.e. large D, L1, . . . , Ld), it will increase much more quickly than

for the limited search described in Section 6.4.2.

Given that we do not want to maximize (6.36), we appeal to Step 3(a)′ of the

IMH algorithm from Section 3.3.2.

Since we use a uniform candidate density, the π/q ratio we need to bound is

max
k1,k2

|G(k1)| · |G(k2)| · |G(k2 + k − k1)| ≤ |G(k∗)| · |G(k∗)| · |G(k∗)|,

so we take C to be |G(k∗)|3.

Example 1 Revisited

Once again, we take D = 2, L1 = L2 = 2 and only two odd Matsubara frequencies.

The parameters are µ = 0.5, t = 1.0, and T = 2.0. We report estimates for σ2(π, 0, i π T)

in Table 6.7. As expected, we have improved accuracy for small sample sizes since we are

able to make use of all values drawn from the weight when evaluating the score function.

The average backward coupling time for 100,000 draws was still 1.2 time steps in this

case with a minimum of 1 and a maximum of 7.

125

Table 6.7: Estimated Value of σ2(0, 0, i π T) based on various sample sizes using the
modified IMH algorithm.

True value of σ2(0, 0, i π T) = 0.010954 + 0.997002 i

sample size = 100 abs. err. rel. err. sample size = 1000 abs. err. rel. err.

0.0180 + 1.1990 i 0.2021 0.2027 −0.1192 + 0.8778 i 0.1765 0.1770

−0.3235 + 1.0589 i 0.3401 0.3411 −0.0395 + 1.0173 i 0.0544 0.0545

−0.0018 + 0.9160 i 0.0820 0.0823 −0.1641 + 0.9528 i 0.1805 0.1810

−0.0130 + 0.8970 i 0.1028 0.1031 −0.0119 + 0.9727 i 0.0333 0.0335

−0.0256 + 1.0099 i 0.0388 0.0389 0.0132 + 1.0930 i 0.0961 0.0963

0.0725 + 1.0963 i 0.1168 0.1171 0.0035 + 0.9326 i 0.0645 0.0651

sample size = 10000 abs. err. rel. err. sample size = 100000 abs. err. rel. err.

0.0138 + 0.9639 i 0.0332 0.0333 0.0110 + 0.9969 i 0.0001 0.0001

0.0135 + 0.9993 i 0.0034 0.0034 0.0107 + 0.9972 i 0.0003 0.0003

0.0263 + 0.9912 i 0.0164 0.0165 0.0110 + 0.9970 i 0.0000 0.0000

0.0235 + 0.9404 i 0.0579 0.0581 0.0106 + 0.9988 i 0.0019 0.0019

−0.0120 + 1.0242 i 0.0356 0.0357 0.0108 + 0.9953 i 0.0017 0.0017

0.0208 + 0.9674 i 0.0312 0.0313 0.0157 + 0.9922 i 0.0068 0.0068

126

Example 2 Revisited

We again consider the case where D = 2, L1 = L2 = 64 with 50 odd Matsubara

frequencies. Using the modified IMH algorithm described at the beginning of this sec-

tion, we arrive at the estimate σ̂2(0, 0, i πT) ≈ −286.0717 − 2876.0375 i which, when

multiplied by the constants we have ignored to this point, contributes

(

2.0

64 · 64

)2

[−286.0717 − 2876.0375 i] ≈ 0.0000068 − 0.000686 i

to the self energy σ(k) given by (6.3).

It is interesting to note that even though the state space was of size (64·64·50)2 =

41, 943, 040, 000, roughly one-third of our 100,000 draws from the weight function, re-

quired that we only go back in time 1 step to achieve the coupling. In 50% of the draws,

we had to go back 3 steps or less and 75% of the time the backward coupling time was

less than or equal to 9. The average backward coupling time in 100,000 draws was 20.5.

This was skewed upwards by a few backward coupling times of just over 2,000, but 90%

of the draws were made in less than 33 time steps.

Chapter 7

Conclusions

7.1 Summary

Perfect sampling is variant of MCMC which eliminates the statistical error that

conventional MCMC algorithms introduce, thereby avoiding the often tedious question

of convergence. The drawback of perfect simulation is that these techniques are generally

hard to apply to more complicated problems.

In this thesis, we presented several new ideas around perfect sampling (the ad-

vances in Chapter 3 and Chapter 4) and showed how these new concepts could be

applied to two relevant problems (the applications in Chapter 5 and Chapter 6). We

also believe that these techniques could facilitate the use of perfect simulation to a wider

range of problems aside from the applications described in this dissertation.

Two topics for future research are mentioned in the following section.

7.2 Future Research

We list two ideas for future research. The first idea, described in Section 7.2.1,

concerns the adaptive IMH algorithm from Chapter 3 and is a general question regard-

ing the analytical assessment of conveWe state another open question for future work

in Section 7.2.2, where we present a specific idea that may address and reduce the

computational cost of the IMH algorithm as it is used in Chapter 5.

128

7.2.1 Analytical Bounds for the AIMH algorithm

In Chapter 3 in Section 3.4.2, we discussed a promising variant on the Metropolis-

Hastings algorithm, the so-called adaptive IMH algorithm, that uses a self-adapting

candidate and seems to converge extremely rapidly to the target distribution.

We would like to be able to quantify this convergence analytically, i.e. we would

like to be able to compute bounds for

‖π − πr,N‖,

where π is the target distribution, πr,N the distribution of the Metropolis-Hastings chain

after r refinements of N draws each, and ‖ · ‖ is the total variation norm, as defined in

Section 2.1.

While this is a question that has yet to be investigated, possible clues on how to

approach this might be found in [17].

7.2.2 Towards a Multistage Coupler for the IMH Algorithm

In Chapter 5 in Section 5.4.3 and Section 5.4.4, we found that applying the IMH

algorithm to the variable selection problem results in very large backward coupling

times. While our formulation of variable selection represents a specific problem for

which we employed the IMH algorithm, we believe that addressing the computational

cost for this application would give insight into how to make the IMH algorithm practi-

cable for many other (for example, Bayesian) applications. Due to the straightforward

implementation of IMH, this could facilitate a larger practical impact of perfect sampling

algorithms.

The following idea could help to drastically reduce the large backward coupling

times for the IMH algorithm. The state space is partitioned into two clusters. In the

first step, a procedure determines into which two cluster the current draw will fall.

Then, in the second step, a draw from the target distribution is made restricted to

129

that particular cluster. (This general idea is due to Meng [34] and also mentioned in

Murdoch [42].)

To describe this idea in more detail within the framework of model selection,

assume that we would like to draw from a target density π(x) ∝ L(x)q(x) and that we

intend to apply an IMH algorithm with candidate density q(x). Moreover, suppose that

max
x

π(x)
q(x) = max

x
L(x) ≤ 1.

First, the partition of the state space S is made the following way. We define

a high likelihood cluster M1 := {x ∈ X|L(x) ≥ k} and a low likelihood cluster M2 :=

X \M1 = {x ∈ X|L(x) < k} for a fixed k that is small “enough”. (How k should be

chosen is discussed later.)

In the first stage we perform an “IMH-like” step, but we only go back in time far

enough to determine in which cluster the draw X0 falls into.

First stage

(1) Draw a candidate Q ∼ q(·) and a U ∼ Uniform(0, 1).

(2) If U < L(Q)
k (we then have U < L(Q)

k < L(Q)
L(y) for all y ∈ M2, so that every

element in M2 will accept).

(a) If Q ∈M1, then X0 ∈M1, report M1 as the cluster.

(b) If Q ∈M2, do a full IMH-step and report the cluster of X0.

(3) If U ≥ L(Q)
k (we then have U ≥ L(Q)

k ≥ L(Q)
L(y) for all y ∈ M1, so that every

element in M2 will reject):

(a) If X−1 ∈M1, then X0 ∈M1, report M1 as the cluster.

(b) If the cluster of X−1 is unknown, do a full IMH-step and report the cluster

of X0.

130

If we choose k small enough so that q(M1) ≈ π(M1) ≈ 1, we can expect to end up

in step (2) (a) “most of the time”. In that case we only have to go back one time step

to determine the likelihood cluster of the current draw. To determine that X−1 ∈M1 in

step (3) (a), we simply repeat the procedure with a new candidate Q and a new random

number U ∼ Uniform(0, 1) to see if we end up in step (2) (a). In the cases where a full

(regular) IMH-step has to be done, we only report the cluster of X0 in order not to

bias the samples.

Second stage

Once the first stage is completed, we know to which cluster to restrict the sim-

ulations in the second stage. For the multistage coupler to be useful, it is crucial that

we know an efficient way to draw from π|M1. Usually, M1 is a compact set. That

information could help in finding a way to sample within that cluster. If the cluster

from the first stage turns out to be M2, a possible way to simulate from π|M2 is to

reduce k and start another multistage coupler with M2 as the state space.

Remark

In the context of model selection, for example, for the case Section 5.3.3 that was

solved using an IMH algorithm, a multistage coupler could be applied once an efficient

way to sample from π|M1 is found.

Bibliography

[1] S. Asmussen. Applied Probability and Queues. John Wiley & Sons, New York,
1987.

[2] S.P. Brooks and G.O. Roberts. Assessing convergence of Markov chain Monte Carlo
algorithms. Stat. Comput., 8:319–335, 1998.

[3] G. Casella and E. George. Explaining the Gibbs sampler. Am. Stat., 46:167–174,
1992.

[4] G. Casella, M. Lavine, and C. Robert. Explaining the perfect sampler. Working
Paper 00-16, Duke University, 2000.

[5] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. Am.
Stat., 49:327–335, 1992.

[6] H. Chipman, E.I. George, and R.E. McCulloch. The practical implementation of
Bayesian model selection. IMS Lect. Notes Monogr. Ser. (Model Selection), 38:67–
116, 2001.

[7] J. Corcoran and U. Schneider. Variants on the independent Metropolis-Hastings
algorithm: approximate and adaptive IMH. In preparation, 2003.

[8] J.N. Corcoran and U. Schneider. Shift and scale coupling methods for perfect
simulation. Prob. Eng. Inf. Sci., 17:277–303, 2003.

[9] J.N. Corcoran, U. Schneider, and H.-B. Schüttler. Perfect stochastic summation
for high order Feynman diagrams. Submitted for publication, 2003. Preprint at
http://amath.colorado.edu/student/schneidu/feynman.html.

[10] J.N. Corcoran and R.L. Tweedie. Perfect sampling of ergodic Harris chains. Ann.
Appl. Prob., 11(2):438–451, 2001.

[11] J.N. Corcoran and R.L. Tweedie. Perfect sampling from independent Metropolis-
Hastings chains. J. Stat. Plann. Inference, 104:297–314, 2002.

[12] M.K. Cowles and B.P. Carlin. Markov chain Monte Carlo convergence diagnostics:
A comparative review. J. Am. Stat. Ass., 91:883–904, 1996.

[13] N. Draper and H. Smith. Applied Regression Analysis. Wiley, New York, second
edition, 1981.

132

[14] R. P. Feynman. The Character of Physical Law. M.I.T. Press, 1967.

[15] J.A. Fill. An interruptible algorithm for perfect sampling via Markov chains. Ann.
Appl. Prob., 8:131–162, 1998.

[16] S.G. Foss and R.L. Tweedie. Perfect simulation and backward coupling. Stoch.
Models, 14:187–203, 1998.

[17] S.G. Foss, R.L. Tweedie, and J.N. Corcoran. Simulating the invariant measures
of Markov chains using horizontal backward coupling at regeneration times. Prob.
Eng. Inf. Sci., 12:303–320, 1998.

[18] P. Fulde. Electron Correlations in Molecules and Solids, Solid State Science.
Springer, Berlin, Heidelberg, third edition, 1995.

[19] A.E. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating
marginal densities. J. Am. Stat. Ass., 85:398–409, 1990.

[20] A. Gelman. Inference and monitoring convergence. In W.R. Gilks, S. Richardson,
and D.J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, chapter 8,
pages 131–143. Chapman & Hall, first edition, 1996.

[21] S. Geman and D. Geman. Gibbs distributions and the Bayesian restoration of
images. IEEE Trans. Pattern Analysis & Machine Intelligence, 6:721–740, 1984.

[22] E.I. George. The variable selection problem. Downloadable from http://www-

stat.wharton.upenn.edu/∼edgeorge/Research papers/vignette.pdf.

[23] E.I. George and R.E. McCulloch. Variable selection via Gibbs sampling. J. Am.
Stat. Ass., 88:881–889, 1993.

[24] E.I. George and R.E. McCulloch. Stochastic search variable selection. In W.R.
Gilks, S. Richardson, and D.J. Spiegelhalter, editors, Markov Chain Monte Carlo
in Practice, chapter 12, pages 203–214. Chapman & Hall, first edition, 1996.

[25] E.I. George and R.E. McCulloch. Approaches to Bayesian variable selection. Stat.
Sin., 7:339–373, 1997.

[26] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Introducing Markov chain
Monte Carlo. In W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors, Markov
Chain Monte Carlo in Practice, chapter 1, pages 1–19. Chapman & Hall, first
edition, 1996.

[27] A. Hald. Statistical Theory with Engineering. Wiley publications in statistics.
Wiley, New York, 1952.

[28] On the Hald data set.
http://www.stat.uconn.edu/∼nalini/fcilmweb/example13.html.

[29] A. Hall. On an experiment determination of π. Messeng. Math, 2:113–114, 1873.

[30] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

133

[31] Y. Huang and P. Djurić. Variable selection by perfect sampling. EURASIP J. Appl.
Si. Pr., 1:38–45, 2002.

[32] W.S. Kendall. Perfect simulation for the area-interaction point process. In L. Ac-
cardi and C.C. Heyde, editors, Probability Towards the Year 2000, pages 218–234.
Springer, New York, 1998.

[33] G.D. Mahan. Many Particle Physics. Plenum Press, New York, second edition,
1990.

[34] X.-L. Meng. Towards a more general Propp-Wilson algorithm: Multistage back-
ward coupling. Monte Carlo Methods - Fields Inst. Commun., 26:85–93, 2000.

[35] K.L. Mengersen and Tweedie R.L. Rates of convergence of the Hastings and
Metropolis algorithms. Ann. Stat., 24:101–121, 1996.

[36] N. Metropolis and S. Ulam. The Monte Carlo method. J. Am. Stat. Ass.,
44(247):335–341, 1953.

[37] A. Mira, J. Møller, and G.O. Roberts. Perfect slice samplers. J. Roy. Stat. Soc.,
63:593–606, 2001. 3.

[38] Model selection reading list. http://www.stat.duke.edu/∼cnk/readings.html.

[39] J. Møller. Perfect simulation of conditionally specified models. J. Roy. Stat. Soc.,
61(1):251–264, 1999.

[40] The Monte Carlo method.
http://www.riskglossary.com/articles/monte carlo method.htm.

[41] P. Monthoux and D.J. Scalapino. Self-consistent dx2−y2 pairing in a two-dimen-
sional Hubbard model. Phys. Rev., 72:1874, 1994.

[42] D.J. Murdoch. Exact sampling for Bayesian inference: Unbounded state spaces.
Monte Carlo Methods - Fields Inst. Commun., 26:111–121, 2000.

[43] D.J. Murdoch and P.J. Green. Exact sampling from a continuous state space.
Scand. J. Stat., 25(3):483–502, 1998.

[44] J.W. Negele and H. Orland. Quantum Many-Particle Systems. Addison Wesley,
Redwood City, CA, 1988.

[45] C.-H. Pao and N.E. Bickers. Renormalization group acceleration of self- consistent
field solutions: two-dimensional Hubbard model. Phys. Rev., 49(1586), 1994.

[46] J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Struct. Algorithms, 9:223–252, 1996.

[47] A.E. Raferty, D. Madigan, and J.A. Hoeting. Bayesian model averaging for linear
regression models. J. Am. Stat. Ass., 92:179–191, 1997.

[48] C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, New York,
1999.

134

[49] S.M. Ross. Probability Models, chapter 4.9 – Markov Chain Monte Carlo Methods,
pages 216–222. Academic Press, eighth edition, 2000.

[50] S.M. Ross. Simulation, chapter 10 – Markov Chain Monte Carlo Methods, pages
223–250. Academic Press, San Diego, third edition, 2002.

[51] U. Schneider. Informal notes on Fill’s algorithm. Downloadable from
http:// amath.colorado.edu/student/schneidu/fill.html.

[52] U. Schneider and J.N. Corcoran. Perfect sampling for Bayesian variable selection
in a linear regression model. J. Stat. Plann. Inference, 2003. To appear. Preprint
at http://www.cgd.ucar.edu/stats/staff/uli/modelselect.html.

[53] O. Stramer and R.L. Tweedie. Self-targeting candidates for Hastings- Metropolis
algorithms. Technical Report 261, Department of Statistics, The University of
Iowa, 1997.

[54] O. Stramer and R.L. Tweedie. Langevin-type models ii: Self-targeting candidates
for mcmc algorithms. Meth. Comp. Appl. Prob., 1:307–328, 1999.

[55] E. Thönnes. A primer in perfect simulation. Lect. Notes Phys., pages 349–378,
2000.

[56] L. Tierney. Markov chains for exploring posterior distributions (with discussion).
Ann. Stat., 1:1701–1762, 1994.

[57] R.L. Tweedie and J.N. Corcoran. Perfect sampling and queueing models. Proc.
38th Annual Allerton Conf. Comm. Control Comput., 2001. (to appear).

[58] A. Voight, C. Liu, Q. Wang, R.W. Robinson, and H.B. Schüttler. Stochastic
Feynman diagram summation for the Anderson impurity model. Submitted for
publication, 2002. Preprint at http://www.csp.uga.edu/publications/HBS/.

[59] D.B. Wilson. Web site for perfectly random sampling with Markov chains.
http://dimacs.rutgers.edu/∼dbwilson/exact.html.

[60] D.B. Wilson. Layered mutishift coupling for use in perfect sampling algorithms
(with a primer on cftp). Fields Inst. Commun., 26:141–176, 2000.

[61] H. Woods, H.H Steinour, and H.R. Starke. Effect of composition of portland cement
on heat evolved during hardening. Ind. Eng. Chem., 24(11):1207–1214, 1932.

Appendix A

Gibbs Sampling

The Gibbs sampler is an MCMC method that allows to get (approximate) sam-

ples from a multivariate distribution with density π(x1, . . . , xn) by drawing following

transition updates simulating from (n− 1)-dimensional conditional distributions.

Since we use this technique in various sections (as Section 4.5.1, Section 4.5.2, Sec-

tion 5.3.1, and Section 5.3.2), we shortly describe the simulation procedure here. There

are several easy-to-read introductions and tutorials on the Gibbs sampler, including

[3, 48, 49, 26, 50].

To be able to use Gibbs sampling, one needs to be able to sample from

the conditional distributions of each component given the remaining com-

ponents, i.e. to simulate from

πXi| A −i
(xi|x−i) where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). (A.1)

Let x(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
n) denote the values of the chain at time t. To transi-

tion to time t + 1, one needs to follow the Gibbs updates which can be characterized as

follows.

For each component i = 1, . . . , n, sequentially draw

X
(t+1)
i = x

(t+1)
i ∼ πXi| A −i

(xi|x(t+1)), (A.2)

where x
(t+1)
−i = (x

(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
n).

136

Remarks

(1) To update the ith component for time t + 1, we incorporate the “new” (from

time t + 1) information for the previous i− 1 components.

(2) Note that as long as we can specify the conditional distributions in (A.1), we

do not need to know the constant of proportionality for π.

(3) We refer the reader to one of the above mentioned references for a proof how the

sampling scheme in (A.2) can be seen as a special case of a Metropolis-Hastings

chain.

Appendix B

Hierarchical Sampling

What we call hierarchical sampling is a (well-known) sampling scheme to simulate

from a joint distribution given by a marginal times a joint density. In this appendix,

we give a quick description of the algorithm and a sketch of a proof of validity.

B.1 Sampling Scheme

Suppose we would like to draw from a joint distribution with density π(x, y) =

fX,Y (x, y) and assume that we know the marginal density fX(x) and the conditional

density fY |X(y|x)

π(x, y) = fX(x)fY |X(y|x).

Furthermore, assume that we know how to sample from the marginal and the

conditional distribution. Then, to sample from π, we can employ the following scheme:

(1) draw X = x1 ∼ fX(x),

(2) draw Y = y1 ∼ Y |X = x1 ∼ fy|x(y|x1).

This yields (x1, y1) ∼ π(x, y)

B.2 Validity

It might be clear intuitively why this scheme represents a valid algorithm to

simulate from π, but for completeness, we sketch a proof.

138

The simulation steps specified above can be viewed as one iteration of a Gibbs

sampler from Appendix A that has been started stationary. The output of it will

therefore also follow the stationary distribution π(x, y).

Assume that we currently have a draw (x0, y0) ∼ π(x, y). In the next iteration in

a Gibbs sampling scheme, we do the following:

(1)′ draw X = x1 ∼ X|Y = y0

(2)′ draw Y = y1 ∼ Y |X = x1

Clearly, (x1, y1) ∼ π(x, y).

The steps for the Gibbs sampler are essentially the same as in the hierarchical

sampling scheme:

In step (1)′, X = x1 depends on the previous draw through y0, but its marginal

is fX(x), so it can be viewed as being equivalent to step (1) above. Steps (2) and (2) ′

are identical.

