Computing Environment Support

Nancy Collins nancy@ucar.edu

or
dart@ucar.edu




Roadmap

Getting code, requirements
Installing and compiling
Converting observations

Running models
Diagnostics

Batch system, Memory, Parallel
Considerations



Getting DART

DART Web Pages
— http://www.image.ucar.edu/DAReS/

Download link
Gives subversion instructions

Need ‘svn’ subversion client

— http://www.image.ucar.edu/~thoar/
svh primer.html




Installing and Compiling

* DART requires a Fortran 90 compiler
— Intel, PGI, IBM, gfortran, pathscale

* Also requires NetCDF libraries

— http://www.unidata.ucar.edu/software/netcdf

* |f running in parallel, requires MPI libraries
— Usually standard on clusters & supercomputers
— NOT required, DART can be compiled without it



Installing and Compiling (cont)

* We use generic Fortran 90 constructs
— Usually compiles easily on new platforms

* Most problems are linking with NetCDF

— The NetCDF libs MUST BE COMPILED WITH SAME
FORTRAN COMPILER AS YOU ARE USING FOR
DART. Also must include the Fortran interfaces.

— At NetCDF build time, can choose to have a single
libnetcdf.a lib, or both libnetcdf.a and libnetcdff.a
(note 2 Fs at end of name)



Installing and Compiling (cont)

Use the ‘mkmf” utilitity
cd into the parT/mkmt directory and find the
closest mkmf.template.xxx file

Copy that into mkmf.template
cd into a DART/model/xxx/work directory

Run quickbuild.csh to compile



DART Documentation

* Web pages:
— http://www.image.ucar.edu/DAReS/
e Documentation comes with subversion checkout:

— index.html in top level DART directory points to all
other DART documentation throughout the directory
tree

— doc/html/Lanai_release.html

* Browse documentation directly from SVN server:

— https://proxy.subversion.ucar.edu/DAReS/DART/
releases/Lanai




Converting Observations

 DART uses a proprietary file format (for now)

e Existing observation converters are found in
the DART tree under DART/observations

 Most frequently used atmospheric
observation types already have converters

available



Running Models - OSSEs

e OSSE observations:
— create_obs_sequence
— create_fixed network

* OSSE execution:
— perfect_model_obs
— filter
e OSSE diagnostics:
— obs_diag
— obs_seq to_netcdf



Running Models — Real Observations

* Observations:
— NCEP
— MADIS
— SSEC

* Execution:
— filter
* Diagnostics:
— obs_diag
— obs_seq to_netcdf



Fortran 90 Namelists

All DART programs use Fortran namelists for
run-time configurations

Always in a single file, always named
‘input.nml’

Each part of the system has its own namelist
Documented in the html files



Diagnhostics

* DART includes a large number of MATLAB
scripts
— Interactive GUI
— “Offline” batch mode
— Plotting “observation space” values
— Looking at “state space” mean and spread



Parallelism

DART is a parallel program that uses MPI

Multiple tasks (copies of the same program)
are running at the same time, exchanging data

Small models can be compiled without MPI

Larger models use parallelism for speed and
to have access to more memory

You generally need a cluster or
supercomputer for parallel jobs



Batch Systems

* Job submission software on large parallel
machines

— LSF, PBS, Moab/Torque, SGE

* Most common issue is memory size on an
individual node

— Multiple CPUs often share memory on a ‘node’
— Machines are connected networks of ‘nodes’
— Tasks on the same node share node memory

— Starting fewer tasks than CPUs gives each task more
memory



Modes of Running

* |f model is single-executable and memory
issues not a problem, DART can advance the
model from inside filter

* |f model is large and parallel, may want to run
model advances and DART as separate jobs




Modes of Running (cont)

* ‘filter’ uses the observation sequence file to
decide how long to run and what model data is
needed
— Long obs_seq files good when filter runs model
— Single-assimilation-window files good for scripted

advances

e Scripted advances mean a job script first runs N
model advances, then runs filter, then repeats

— Generally more flexible and easier when the model is
itself a parallel program



Modes of Running (cont)

* The number of MPI tasks to get best

performance from the model will be different
than the number of MPI tasks for “filter”

e “filter” requires enough tasks and memory to
process all N ensemble members at once

— Often need to run with fewer tasks than CPUs on
a node to get sufficient memory



