[an error occurred while processing this directive] |
Table of Contents 1. Introduction 2. Thin Plate Splines: Tps 3. Spatial Process Models: Krig
5. Spatial Predictions for Large Data Sets
Web Version of Fields Manual |
summary( ozone.tps)
Call:
Tps(x = ozone$x, Y = ozone$y, cov.function =
"Thin plate spline radial basis functions (rad.cov) ")
1. Number of Observations: 2. Number of unique points: 3. Degree of polynomial null space ( base model): 4. Number of parameters in the null space 5. Effective degrees of freedom: 6. Residual degrees of freedom: 7. MLE sigma 8. GCV est. sigma 9. MLE rho 10. Scale used for covariance (rho) 11. Scale used for nugget (sigma^2) 12. lambda (sigma2/rho) 13. Cost in GCV 14. GCV Minimum |
20 20 1 3 4.5 15.5 4.098 4.072 205.8 205.8 16.79 0.0816 1 21.41 |
Residuals: min 1st Q median 3rd Q max -6.801 -1.434 -0.5055 1.439 7.791 REMARKS Covariance function: rad.cov
[1] 38.35702 38.62821 38.44499 39.01395 38.79481 39.72864 38.30791 39.35719 [9] 39.19664 39.63307 40.98843 40.05890 41.11455 40.87318 41.42214 40.35936 [17] 40.03565 39.10773 41.34989 40.83722
![]() Close-up |
![]() Zoomed-out (to see location better) |
![]() Contour Plot |
![]() Surface Plot w/ Standard Errors from Krig fit |
Call: Krig(x = ozone$x, Y = ozone$y, cov.function = exp.cov, theta = 10)
Number of Observations: 20 Number of unique points: 20 Degree of polynomial null space ( base model): 1 Number of parameters in the null space 3 Effective degrees of freedom: 4.5 Residual degrees of freedom: 15.5 MLE sigma 4.206 GCV est. sigma 4.2 MLE rho 2.374 Scale used for covariance (rho) 2.374 Scale used for nugget (sigma^2) 17.69 lambda (sigma2/rho) 7.453 Cost in GCV 1 GCV Minimum 22.8 Residuals: min 1st Q median 3rd Q max -7.037 -2.189 -0.4681 2.299 7.382 REMARKS Covariance function: exp.cov
Call:
Krig(x = coalash$x, Y = coalash$y, cov.function = exp.cov.S)
Number of Observations: 208 Number of unique points: 208 Degree of polynomial null space ( base model): 1 Number of parameters in the null space 3 Effective degrees of freedom: 29.7 Residual degrees of freedom: 178.3 MLE sigma 1.02 GCV est. sigma 1.018 MLE rho 0.2829 Scale used for covariance (rho) 0.2829 Scale used for nugget (sigma^2) 1.04 lambda (sigma2/rho) 3.675 RESIDUAL SUMMARY: min 1st Q median 3rd Q max -2.169 -0.6578 -0.09917 0.4115 6.169 COVARIANCE MODEL: exp.cov.S DETAILS ON SMOOTHING PARAMETER: Method used: GCV Cost: 1 lambda trA GCV GCV.one GCV.model shat 3.675 29.69 1.209 1.209 NA 1.018 Summary of estimates for lambda lambda trA GCV shat GCV 3.675 29.69 1.209 1.018 GCV.one 3.675 29.69 1.209 1.018
theta | GCV Minimum |
0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 5.0 10.0 100.0 |
1.225 1.221 1.218 1.216 1.214 1.212 1.211 1.21 1.209 1.209 1.208 1.208 1.207 1.207 1.207 1.207 1.206 1.205 1.205 |
![]() |
![]() |
Formula: vgram ~ sigma2 * (1 - rho * exp( - d/theta)) Parameters: Value Std. Error t value sigma2 1.696190 0.0334569 50.69770 rho 0.750553 0.2807990 2.67292 theta 1.635050 0.5580010 2.93019 Residual standard error: 3.60828 on 21523 degrees of freedom Correlation of Parameter Estimates: sigma2 rho rho -0.346 theta 0.566 -0.877
CALL: Krig(x = coalash$x, Y = coalash$y, rho = 0.750553, sigma2 = 1.69619, theta = 1.63505) Number of Observations: 208 Number of unique points: 208 Degree of polynomial null space ( base model): 1 Number of parameters in the null space 3 Effective degrees of freedom: 48.8 Residual degrees of freedom: 159.2 MLE sigma 0.9604 GCV est. sigma 0.9647 MLE rho 0.4082 Scale used for covariance (rho) 0.7506 Scale used for nugget (sigma^2) 1.696 lambda (sigma2/rho) 2.26 RESIDUAL SUMMARY: min 1st Q median 3rd Q max -1.899 -0.5541 -0.1009 0.3808 5.486 COVARIANCE MODEL: exp.cov DETAILS ON SMOOTHING PARAMETER: Method used: user Cost: 1 lambda trA GCV GCV.one GCV.model shat 2.26 48.8 1.216 1.216 NA 0.9647 Summary of estimates for lambda lambda trA GCV shat GCV 3.422 37.27 1.213 0.9979 GCV.one 3.422 37.27 1.213 0.9979
Krig(x = ozone2$lon.lat[idn, ], Y = day16[idn], cov.function = exp.earth.cov, m = 1, mean.obj = mean.tps, sd.obj = sd.tps, theta = 343) Number of Observations: 147 Number of unique points: 147 Degree of polynomial null space ( base model): 0 Number of parameters in the null space 1 Effective degrees of freedom: 114.7 Residual degrees of freedom: 32.3 MLE sigma 0.289 GCV est. sigma 0.3172 MLE rho 7.538 Scale used for covariance (rho) 7.538 Scale used for nugget (sigma^2) 0.0835 lambda (sigma2/rho) 0.01108 Cost in GCV 1 GCV Minimum 0.4585 Y is standardized before spatial estimate is found Residuals: min 1st Q median 3rd Q max -0.6091 -0.07774 0.003612 0.08233 0.433 REMARKS Covariance function: exp.earth.cov
my.cov <- function( x1, x2, p = 1, range=1) { cov <- exp( - (rdist(x1, x2)/range)^p) return( cov) }
Table - Covariance functions in Fields | ||||
---|---|---|---|---|
Name/ description | S-Function | optional arguments with defaults | Fortran/S version | C argument |
Exponential/ Gaussian | exp.cov | theta = 1, p = 1 | both | yes |
Exponential for sphere | exp.earth.cov | theta = 1 | S | no |
Matern | matern.cov | smoothness = 0.5 range = ?? | FORTRAN | no |
Periodic 1-d | periodic.cov.ld | a = 0, b = 1 | both | no |
Cylindrical | periodic.cov.cyl | a = 0, b = 365 theta = 1 | S | no |
Poisson covariance for the sphere | poisson.cov | eta = 0.2 | S | no |
Sample covariance | test.cov | theta = 1 | S | no |
Generalized spline covariance | rad.cov | p | both | yes |
foo.cov.S <- function( x1, x2, range) { exp( -(rdist(x1, x2)/range)**2) } # end of foo.cov fcn (Note that foo.cov.S is the Gaussian covariance fcn.)
Call:
Krig(x = ozone$x, Y = ozone$y, cov.function = foo.cov.S, range = 10) Number of Observations: 20 Number of unique points: 20 Degree of polynomial null space ( base model): 1 Number of parameters in the null space 3 Effective degrees of freedom: 3.2 Residual degrees of freedom: 16.8 MLE sigma 4.402 GCV est. sigma 4.402 MLE rho 0.2765 Scale used for covariance (rho) 0.2765 Scale used for nugget (sigma^2) 19.38 lambda (sigma2/rho) 70.08 Cost in GCV 1 GCV Minimum 23.06 Residuals: min 1st Q median 3rd Q max -7.802 -2.736 -0.3941 2.757 7.472 REMARKS Covariance function: foo.cov.S