|
DI se.imageCreates an image object of standard errors for spatial prediction using se.cov for the functions image or image.plot USAGE: se.image(nw.obj=new.network, nx=40, ny=40, ...) REQUIRED ARGUMENTS: nw.obj network object as created by make.network.obj nx Number of x grid points ny Number of y grid points OPTIONAL ARGUMENTS: ... any other options for se.cov VALUE: Returns a list of x, y, z where x and y are grid locations and z is a matrix of standard errors of prediction at each grid location. SEE ALSO: se.cov EXAMPLES: # The function is currently defined as function(nw.obj = new.network, nx = 40, ny = 40, ...) { locs <- nw.obj$locs grid <- nw.obj$grid cov <- nw.obj$cov.obj # # discern what the sd object should be. # if(is.null(cov$sd.obj)) sdobj <- 1 else if(is.numeric(cov$sd.obj)) sdobj <- cov$sd.obj else sdobj <- get(cov$sd.obj) if(is.null(grid)) { x <- range(locs[, 1], na.rm = T) y <- range(locs[, 2], na.rm = T) x2 <- seq(x[1], x[2], length = nx) y2 <- seq(y[1], y[2], length = ny) grid <- list(x = x2, y = y2) } else { if(is.matrix(grid)) grid <- list(x = grid[, 1], y = grid[, 2]) } nx <- length(grid$x) ny <- length(grid$y) gridpts <- cbind(rep(grid$x, ny), rep(grid$y, rep(nx, ny))) cov.fcn <- cov$cov.function cov.args <- cov$args out <- se.cov(locs, gridpts, cov.function = cov.fcn, sd.obj = sdobj, cov.args) z <- matrix(out, nrow = nx, ncol = ny) list(x = grid$x, y = grid$y, z = z) } |
This is software for statistical research and should not be used for commercial purposes. The authors do not guarantee the correctness of any function or program in this package.